Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: G. Malle and B. H. Matzat
Title: Inverse Galois theory
Additional book information: Springer-Verlag, Berlin, Heidelberg, New York, 1999, xv + 436 pp., ISBN 3-540-62890-8, $59.95$

References [Enhancements On Off] (What's this?)

[A]
S.S. ABHYANKAR, Further nice equations for nice groups, Transactions AMS 348 (1996), 1555-1577. MR 1348146
[Be]
G.V. BELYI, On extensions of the maximal cyclotomic field having a given classical Galois group, J. reine angew. Math. 341 (1983), 147-156. MR 0697314
[DR1]
M. DETTWEILER AND S. REITER, On rigid tuples in linear groups of odd dimension, J. Algebra 222 (1999), 550-560. CMP 2000:07
[DR2]
M. DETTWEILER AND S. REITER, An algorithm of Katz and its application in Galois Theory, preprint 1999.
[Fr]
M. FRIED, Fields of definition of function fields and Hurwitz families -- groups as Galois groups, Comm. Algebra 5 (1977), 17-82. MR 0453746
[FJ]
M. FRIED AND M. JARDEN, Field Arithmetic, Ergebn. Math. und Ihrer Grenzgeb. 11, Springer Verlag 1986. MR 0868860
[FV1]
M. FRIED AND H. V¨OLKLEIN, The inverse Galois problem and rational points on moduli spaces, Math. Annalen 290 (1991), 771-800. MR 1119950
[FV2]
M. FRIED AND H. V¨OLKLEIN, The embedding problem over a Hilbertian PAC-field, Annals of Math. 135 (1992), 469-481. MR 1166641
[FM]
D. FROHARDT AND K. MAGAARD, Composition factors of monodromy groups, to appear in Annals of Math.
[GT]
R.M. GURALNICK AND J.G. THOMPSON, Finite groups of genus zero, J. Algebra 131 (1990), 303 - 341. MR 1055011
[Har]
D. HARAN, Hilbertian fields under separable algebraic extensions, Invent. Math. 137 (1999), 113-126. CMP 99:16
[HJ]
D. HARAN AND M. JARDEN, The absolute Galois group of $\mathbb{C}(x)$, to appear in Pacific J. Math.
[Ha]
D. HARBATER, Abhyankar's Conjecture on Galois Groups over Curves, Invent. Math. 117 (1994), 1-25. MR 1269423
[Hur]
A. HURWITZ, Über Riemann'sche Flächen mit gegebenen Verzweigungspunkten, Math. Annalen 39 (1891), 1-61.
[Ka]
N. KATZ, Rigid local systems, Princeton University Press, 1996. MR 1366651
[Malle]
G. MALLE, Exceptional groups of Lie type as Galois groups, J. reine angew. Math. 392 (1988), 70-109. MR 0965058
[Mat1]
B. H. MATZAT, Konstruktive Galoistheorie, Lect. Notes in Math. 1284, Springer, Heidelberg, 1987. MR 1004467
[Mat2]
B. H. MATZAT, Zum Einbettungsproblem der algebraischen Zahlentheorie mit nicht-abelschem Kern, Invent. Math. 80 (1985), 365-374. MR 0788415
[Mat3]
B. H. MATZAT, Zöpfe und Galoissche Gruppen, J. reine angew. Math. 420 (1991), 99-159. MR 1124568
[Ra]
M. RAYNAUD, Revêtements de la droite affine en caractéristique $p>0$ et conjecture d'Abhyankar, Invent. Math. 116 (1994), 425-462. MR 1253200
[Se]
J.-P. SERRE, Topics in Galois Theory, Jones and Bartlett, Boston, 1992. MR 1162313
[SV]
K. STRAMBACH AND H. V¨OLKLEIN, On linearly rigid tuples, J. reine angew. Math. 510 (1999), 57-62. MR 1696090
[Th1]
J. G. THOMPSON, Some finite groups which appear as $Gal(L\big\vert K)$, where $K\subset\mathbb{Q}(\mu_n)$, J. Algebra 89 (1984), 437-499. MR 0751155
[Th2]
J. G. THOMPSON, Rigidity, GL$(n,q)$, and the braid group, Bull. Soc. Math. Belg. 17 (1990), 723-733. MR 1316220
[ThV1]
J. THOMPSON AND H. V¨OLKLEIN, Symplectic groups as Galois groups, J. Group Theory 1 (1998), 1-58. MR 1490157
[ThV2]
J. THOMPSON AND H. V¨OLKLEIN, Braid-abelian tuples in $\operatorname{Sp}_n(K)$, pp. 218-238 in: Aspects of Galois Theory, London Math. Soc. Lect. Notes 256, Cambridge University Press 1999. MR 1708608
[V1]
H. V¨OLKLEIN, Groups as Galois Groups - an Introduction, Cambr. Studies in Adv. Math. 53, Cambridge Univ. Press 1996. MR 1405612
[V2]
H. V¨OLKLEIN, Rigid generators of classical groups, Math. Annalen 311 (1998), 421-438. MR 1637911
[V3]
H. V¨OLKLEIN, The braid group and linear rigidity, to appear in Geom. Ded.
[V4]
H. V¨OLKLEIN, A transformation principle for covers of $P^1$, to appear in J. reine angew. Math.

Review Information:

Reviewer: Helmut Völklein
Affiliation: University of Florida
Email: helmut@math.ufl.edu
Journal: Bull. Amer. Math. Soc. 38 (2001), 235-243
Published electronically: December 27, 2000
Review copyright: © Copyright 2000 American Mathematical Society