Book Review
The AMS does not provide abstracts of book reviews.
You may download the entire review from the links below.
Full text of review:
PDF
This review is available free of charge.
Book Information:
Author:
M. A. Guest
Title:
Harmonic maps, loop groups, and integrable systems
Additional book information:
London Mathematical Society Student Texts 38, Cambridge Univ. Press,
Cambridge, UK,
1997,
xiii + 194 pp.,
ISBN 0-521-58932-0,
$14.95$,
paperback
[1] A. Bobenko, All constant mean curvature tori in
in terms of theta-functions. Math. Ann. 290 (1991), no. 2, 209-245. MR 1109632
[2] F. Burstall, D. Ferus, F. Pedit and U. Pinkall, Harmonic tori in symmetric spaces and commuting Hamiltonian systems on loop algebras. Ann. of Math. (2) 138 (1993), no. 1, 173-212. MR 1230929
[3] F. Burstall and F. Pedit, Harmonic maps via Adler-Kostant-Symes theory. Harmonic maps and integrable systems, 221-272, Aspects Math., E23, Vieweg, Braunschweig, 1994. CMP 94:09
[4] F. Burstall and F. Pedit, Dressing orbits of harmonic maps. Duke Math. J. 80 (1995), no. 2, 353-382. MR 1369397
[5] F. Burstall and M. Guest, Harmonic two-spheres in compact symmetric spaces, revisited. Math. Ann. 309 (1997), no. 4, 541-572. MR 1483823
[6] J. Dorfmeister and H. Wu, Constant mean curvature surfaces and loop groups. J. Reine Angew. Math. 440 (1993), 43-76. MR 1225957
[7] J. Dorfmeister, F. Pedit and H. Wu, Weierstrass type representation of harmonic maps into symmetric spaces. Comm. Anal. Geom. 6 (1998), no. 4, 633-668. MR 1664887
[8] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68. MR 0495450
[9] J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385-524. MR 0956352
[10] Ch. Jaggy, On the classification of constant mean curvature tori in
. Comment. Math. Helv. 69 (1994), no. 4, 640-658. MR 1303230
[11] M. Jimbo and T. Miwa, Monodromy, solitons and infinite-dimensional Lie algebras. Vertex operators in mathematics and physics (Berkeley, Calif., 1983), 275-290, Math. Sci. Res. Inst. Publ., 3, Springer, New York, 1985. CMP 17:10
[12] M. Jimbo and T. Miwa, Integrable systems and infinite-dimensional Lie algebras. Integrable systems in statistical mechanics, 65-127, Ser. Adv. Statist. Mech., 1, World Sci. Publishing, Singapore, 1985. CMP 18:08
[13] U. Pinkall and I. Sterling, On the classification of constant mean curvature tori. Ann. of Math. (2) 130 (1989), no. 2, 407-451. MR 1014929
[14] K. Pohlmeyer, Integrable Hamiltonian systems and interactions through quadratic constraints, Comm. Math. Phys. 46 (1976), 207-221. MR 0408535
[15] A. Pressley and G. Segal, Loop groups. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University, New York, 1986. MR 0900587
[16] M. Sato and Y. Sato, Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold. Nonlinear partial differential equations in applied science (Tokyo, 1982), 259-271, North-Holland Math. Stud., 81, North-Holland, Amsterdam-New York, 1983. MR 0730247
[17] G. Segal and G. Wilson, Loop groups and equations of KdV type, Inst. Hautes Études Sci. Publ. Math. No. 61, (1985), 5-65. MR 0783348
[18] G. Segal, Loop groups and harmonic maps. Advances in homotopy theory (Cortona, 1988), 153-164, London Math. Soc. Lecture Note Ser., 139, Cambridge Univ. Press, Cambridge, 1989. MR 1055875
[19] K. Uhlenbeck, Harmonic maps into Lie groups: classical solutions of the chiral model, J. Differential Geom. 30 (1989), no. 1, 1-50. MR 1001271
- [1]
- A. Bobenko, All constant mean curvature tori in
in terms of theta-functions. Math. Ann. 290 (1991), no. 2, 209-245. MR 1109632
- [2]
- F. Burstall, D. Ferus, F. Pedit and U. Pinkall, Harmonic tori in symmetric spaces and commuting Hamiltonian systems on loop algebras. Ann. of Math. (2) 138 (1993), no. 1, 173-212. MR 1230929
- [3]
- F. Burstall and F. Pedit, Harmonic maps via Adler-Kostant-Symes theory. Harmonic maps and integrable systems, 221-272, Aspects Math., E23, Vieweg, Braunschweig, 1994. CMP 94:09
- [4]
- F. Burstall and F. Pedit, Dressing orbits of harmonic maps. Duke Math. J. 80 (1995), no. 2, 353-382. MR 1369397
- [5]
- F. Burstall and M. Guest, Harmonic two-spheres in compact symmetric spaces, revisited. Math. Ann. 309 (1997), no. 4, 541-572. MR 1483823
- [6]
- J. Dorfmeister and H. Wu, Constant mean curvature surfaces and loop groups. J. Reine Angew. Math. 440 (1993), 43-76. MR 1225957
- [7]
- J. Dorfmeister, F. Pedit and H. Wu, Weierstrass type representation of harmonic maps into symmetric spaces. Comm. Anal. Geom. 6 (1998), no. 4, 633-668. MR 1664887
- [8]
- J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68. MR 0495450
- [9]
- J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385-524. MR 0956352
- [10]
- Ch. Jaggy, On the classification of constant mean curvature tori in
. Comment. Math. Helv. 69 (1994), no. 4, 640-658. MR 1303230
- [11]
- M. Jimbo and T. Miwa, Monodromy, solitons and infinite-dimensional Lie algebras. Vertex operators in mathematics and physics (Berkeley, Calif., 1983), 275-290, Math. Sci. Res. Inst. Publ., 3, Springer, New York, 1985. CMP 17:10
- [12]
- M. Jimbo and T. Miwa, Integrable systems and infinite-dimensional Lie algebras. Integrable systems in statistical mechanics, 65-127, Ser. Adv. Statist. Mech., 1, World Sci. Publishing, Singapore, 1985. CMP 18:08
- [13]
- U. Pinkall and I. Sterling, On the classification of constant mean curvature tori. Ann. of Math. (2) 130 (1989), no. 2, 407-451. MR 1014929
- [14]
- K. Pohlmeyer, Integrable Hamiltonian systems and interactions through quadratic constraints, Comm. Math. Phys. 46 (1976), 207-221. MR 0408535
- [15]
- A. Pressley and G. Segal, Loop groups. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University, New York, 1986. MR 0900587
- [16]
- M. Sato and Y. Sato, Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold. Nonlinear partial differential equations in applied science (Tokyo, 1982), 259-271, North-Holland Math. Stud., 81, North-Holland, Amsterdam-New York, 1983. MR 0730247
- [17]
- G. Segal and G. Wilson, Loop groups and equations of KdV type, Inst. Hautes Études Sci. Publ. Math. No. 61, (1985), 5-65. MR 0783348
- [18]
- G. Segal, Loop groups and harmonic maps. Advances in homotopy theory (Cortona, 1988), 153-164, London Math. Soc. Lecture Note Ser., 139, Cambridge Univ. Press, Cambridge, 1989. MR 1055875
- [19]
- K. Uhlenbeck, Harmonic maps into Lie groups: classical solutions of the chiral model, J. Differential Geom. 30 (1989), no. 1, 1-50. MR 1001271
Review Information:
Reviewer:
Josef Dorfmeister
Affiliation:
TU-Muenchen
Email:
dorfm@mathematik.tu-muenchen.de
Journal:
Bull. Amer. Math. Soc.
38 (2001), 251-254
Published electronically:
December 27, 2000
Review copyright:
© Copyright 2000
American Mathematical Society