The arithmetic and geometry of Salem numbers
HTML articles powered by AMS MathViewer
- by Eknath Ghate and Eriko Hironaka PDF
- Bull. Amer. Math. Soc. 38 (2001), 293-314 Request permission
Abstract:
A Salem number is a real algebraic integer, greater than $1$, with the property that all of its conjugates lie on or within the unit circle, and at least one conjugate lies on the unit circle. In this paper we survey some of the recent appearances of Salem numbers in parts of geometry and arithmetic, and discuss the possible implications for the ‘minimization problem’. This is an old question in number theory which asks whether the set of Salem numbers is bounded away from $1$.References
- E. Artin and J. Tate, Class field theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0223335
- M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, and J.-P. Schreiber, Pisot and Salem numbers, Birkhäuser Verlag, Basel, 1992. With a preface by David W. Boyd. MR 1187044, DOI 10.1007/978-3-0348-8632-1 Bornhorn99 H. Bornhorn, Mahler-masse und speziell werte von ${L}$-funktionen, Preprintreihe, SFB 478 - Geometrische Strukturen in der Mathematik ISSN 1435-1188 (1999).
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- David W. Boyd, Small Salem numbers, Duke Math. J. 44 (1977), no. 2, 315–328. MR 453692
- David W. Boyd, Pisot and Salem numbers in intervals of the real line, Math. Comp. 32 (1978), no. 144, 1244–1260. MR 491587, DOI 10.1090/S0025-5718-1978-0491587-8
- David W. Boyd, Reciprocal polynomials having small measure, Math. Comp. 35 (1980), no. 152, 1361–1377. MR 583514, DOI 10.1090/S0025-5718-1980-0583514-9
- David W. Boyd, Speculations concerning the range of Mahler’s measure, Canad. Math. Bull. 24 (1981), no. 4, 453–469. MR 644535, DOI 10.4153/CMB-1981-069-5
- David W. Boyd, Mahler’s measure and special values of $L$-functions, Experiment. Math. 7 (1998), no. 1, 37–82. MR 1618282, DOI 10.1080/10586458.1998.10504357
- J. W. Cannon and Ph. Wagreich, Growth functions of surface groups, Math. Ann. 293 (1992), no. 2, 239–257. MR 1166120, DOI 10.1007/BF01444714
- T. Chinburg, On the arithmetic of two constructions of Salem numbers, J. Reine Angew. Math. 348 (1984), 166–179. MR 733929, DOI 10.1515/crll.1984.348.166
- T. Chinburg, Salem numbers and $L$-functions, J. Number Theory 18 (1984), no. 2, 213–214. MR 741952, DOI 10.1016/0022-314X(84)90055-6
- Antone Costa and Eduardo Friedman, Ratios of regulators in totally real extensions of number fields, J. Number Theory 37 (1991), no. 3, 288–297. MR 1096445, DOI 10.1016/S0022-314X(05)80044-7
- H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, 4th ed., Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 14, Springer-Verlag, Berlin-New York, 1980. MR 562913, DOI 10.1007/978-3-662-21943-0
- Christopher Deninger, Deligne periods of mixed motives, $K$-theory and the entropy of certain $\textbf {Z}^n$-actions, J. Amer. Math. Soc. 10 (1997), no. 2, 259–281. MR 1415320, DOI 10.1090/S0894-0347-97-00228-2
- E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), no. 4, 391–401. MR 543210, DOI 10.4064/aa-34-4-391-401
- Graham Everest and Thomas Ward, Heights of polynomials and entropy in algebraic dynamics, Universitext, Springer-Verlag London, Ltd., London, 1999. MR 1700272, DOI 10.1007/978-1-4471-3898-3
- V. Flammang, M. Grandcolas, and G. Rhin, Small Salem numbers, Number theory in progress, Vol. 1 (Zakopane-Kościelisko, 1997) de Gruyter, Berlin, 1999, pp. 165–168. MR 1689505
- William J. Floyd and Steven P. Plotnick, Symmetries of planar growth functions, Invent. Math. 93 (1988), no. 3, 501–543. MR 952281, DOI 10.1007/BF01410198
- R. H. Fox, A quick trip through knot theory, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 120–167. MR 0140099
- Eduardo Friedman and Nils-Peter Skoruppa, Relative regulators of number fields, Invent. Math. 135 (1999), no. 1, 115–144. MR 1664697, DOI 10.1007/s002220050281 Hironaka98 E. Hironaka, The Lehmer polynomial and pretzel knots, Bull. of Canadian Math. Soc. (to appear) (1998).
- Nathan Jacobson, Basic algebra. II, 2nd ed., W. H. Freeman and Company, New York, 1989. MR 1009787 KirbyProblems R. Kirby, Problems in low-dimensional topology, Geometric Topology (W. H. Kazez, ed.), Studies in Advanced Mathematics, A.M.S., 1997. Lehmer33 D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. 34 (1933), 461–469.
- Douglas Lind, Klaus Schmidt, and Tom Ward, Mahler measure and entropy for commuting automorphisms of compact groups, Invent. Math. 101 (1990), no. 3, 593–629. MR 1062797, DOI 10.1007/BF01231517
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825, DOI 10.1007/978-3-642-51445-6 MossinghoffWWW M. J. Mossinghoff, Lehmer’s Conjecture, http://www.math.ucla.edu/˜mjm.
- Michael J. Mossinghoff, Polynomials with small Mahler measure, Math. Comp. 67 (1998), no. 224, 1697–1705, S11–S14. MR 1604391, DOI 10.1090/S0025-5718-98-01006-0
- Walter D. Neumann and Alan W. Reid, Arithmetic of hyperbolic manifolds, Topology ’90 (Columbus, OH, 1990) Ohio State Univ. Math. Res. Inst. Publ., vol. 1, de Gruyter, Berlin, 1992, pp. 273–310. MR 1184416
- Walter Parry, Growth series of Coxeter groups and Salem numbers, J. Algebra 154 (1993), no. 2, 406–415. MR 1206129, DOI 10.1006/jabr.1993.1022
- Gary Alan Ray, Relations between Mahler’s measure and values of $L$-series, Canad. J. Math. 39 (1987), no. 3, 694–732. MR 905752, DOI 10.4153/CJM-1987-034-0
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288
- Raphaël Salem, Algebraic numbers and Fourier analysis, D. C. Heath and Company, Boston, Mass., 1963. MR 0157941
- Klaus Schmidt, Dynamical systems of algebraic origin, Progress in Mathematics, vol. 128, Birkhäuser Verlag, Basel, 1995. MR 1345152 Seifert34 H. Seifert, Über das geschlecht von knoten, Math. Ann. 110 (1934), 571–592.
- Jean-Pierre Serre, Cohomologie des groupes discrets, Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970) Ann. of Math. Studies, No. 70, Princeton Univ. Press, Princeton, N.J., 1971, pp. 77–169 (French). MR 0385006
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237, DOI 10.1007/978-1-4757-5673-9
- Joseph H. Silverman, Small Salem numbers, exceptional units, and Lehmer’s conjecture, Rocky Mountain J. Math. 26 (1996), no. 3, 1099–1114. Symposium on Diophantine Problems (Boulder, CO, 1994). MR 1428489, DOI 10.1216/rmjm/1181072040
- C. J. Smyth, On the product of the conjugates outside the unit circle of an algebraic integer, Bull. London Math. Soc. 3 (1971), 169–175. MR 289451, DOI 10.1112/blms/3.2.169
- Gerald Myerson and C. J. Smyth, Corrigendum: “On measures of polynomials in several variables” [Bull. Austral. Math. Soc. 23 (1981), no. 1, 49–63; MR 82k:10074] by Smyth, Bull. Austral. Math. Soc. 26 (1982), no. 2, 317–319. MR 683659, DOI 10.1017/S0004972700005773
- H. M. Stark, $L$-functions at $s=1$. II. Artin $L$-functions with rational characters, Advances in Math. 17 (1975), no. 1, 60–92. MR 382194, DOI 10.1016/0001-8708(75)90087-0
- Robert Steinberg, Finite reflection groups, Trans. Amer. Math. Soc. 91 (1959), 493–504. MR 106428, DOI 10.1090/S0002-9947-1959-0106428-2 Sury83 B. Sury, Letter to D. Boyd, (1983).
- B. Sury, Arithmetic groups and Salem numbers, Manuscripta Math. 75 (1992), no. 1, 97–102. MR 1156218, DOI 10.1007/BF02567074
- Kisao Takeuchi, Commensurability classes of arithmetic triangle groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), no. 1, 201–212. MR 463116
- John Tate, Les conjectures de Stark sur les fonctions $L$ d’Artin en $s=0$, Progress in Mathematics, vol. 47, Birkhäuser Boston, Inc., Boston, MA, 1984 (French). Lecture notes edited by Dominique Bernardi and Norbert Schappacher. MR 782485 ThurstonNotes W. Thurston, The geometry and topology of 3-manifolds, (unpublished lecture notes), 1977.
- Marie-France Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980 (French). MR 580949, DOI 10.1007/BFb0091027
- F. Rodriguez Villegas, Modular Mahler measures. I, Topics in number theory (University Park, PA, 1997) Math. Appl., vol. 467, Kluwer Acad. Publ., Dordrecht, 1999, pp. 17–48. MR 1691309
- Paul Voutier, An effective lower bound for the height of algebraic numbers, Acta Arith. 74 (1996), no. 1, 81–95. MR 1367580, DOI 10.4064/aa-74-1-81-95
Additional Information
- Eknath Ghate
- Affiliation: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400 005, India
- Email: eghate@math.tifr.res.in
- Eriko Hironaka
- Affiliation: Department of Mathematics, Florida State University, Tallahassee, FL 32306
- MR Author ID: 322315
- Email: hironaka@math.fsu.edu
- Received by editor(s): November 20, 1999
- Published electronically: March 27, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 38 (2001), 293-314
- MSC (2000): Primary 11R06, 11R52, 20F55
- DOI: https://doi.org/10.1090/S0273-0979-01-00902-8
- MathSciNet review: 1824892