Frames, Riesz bases, and discrete Gabor/wavelet expansions
HTML articles powered by AMS MathViewer
- by Ole Christensen PDF
- Bull. Amer. Math. Soc. 38 (2001), 273-291 Request permission
Abstract:
This paper is a survey of research in discrete expansions over the last 10 years, mainly of functions in $L^2(\mathbb R)$. The concept of an orthonormal basis $\{f_n\}$, allowing every function $f \in L^2(\mathbb R)$ to be written $f=\sum c_nf_n$ for suitable coefficients $\{c_n\}$, is well understood. In separable Hilbert spaces, a generalization known as frames exists, which still allows such a representation. However, the coefficients $\{c_n\}$ are not necessarily unique. We discuss the relationship between frames and Riesz bases, a subject where several new results have been proved over the last 10 years. Another central topic is the study of frames with additional structure, most important Gabor frames (consisting of modulated and translated versions of a single function) and wavelets (translated and dilated versions of one function). Along the way, we discuss some possible directions for future research.References
- Radu Balan, Stability theorems for Fourier frames and wavelet Riesz bases, J. Fourier Anal. Appl. 3 (1997), no. 5, 499–504. Dedicated to the memory of Richard J. Duffin. MR 1491930, DOI 10.1007/BF02648880
- John J. Benedetto and Michael W. Frazier (eds.), Wavelets: mathematics and applications, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1994. MR 1247511
- John J. Benedetto, Christopher Heil, and David F. Walnut, Differentiation and the Balian-Low theorem, J. Fourier Anal. Appl. 1 (1995), no. 4, 355–402. MR 1350699, DOI 10.1007/s00041-001-4016-5
- John J. Benedetto and Shidong Li, The theory of multiresolution analysis frames and applications to filter banks, Appl. Comput. Harmon. Anal. 5 (1998), no. 4, 389–427. MR 1646534, DOI 10.1006/acha.1997.0237 BL2 Benedetto, J. and Li, S.: Subband coding and noise reduction in frame multiresolution analysis. In “Proceedings of SPIE Conference on Mathematical Imaging", San Diego, July 1994. BT Benedetto, J. and Treiber, O.: Wavelet frames: multiresolution analysis and extension principles. To appear in “Wavelet transforms and time-frequency signal analysis”, ed. L. Debnath. CP Casazza, P.G. The art of frame theory. Taiwanese J. of Math. 4 no.2 (2000), p. 129-201. CC3 Casazza, P.G. and Christensen, O.: Weyl-Heisenberg frames for subspaces of $L^2(\mathbb {R})$, Proc. Amer. Math. Soc. 129 (2001), 145–154.
- Peter G. Casazza and Ole Christensen, Frames and Schauder bases, Approximation theory, Monogr. Textbooks Pure Appl. Math., vol. 212, Dekker, New York, 1998, pp. 133–139. MR 1625224
- Peter G. Casazza and Ole Christensen, Frames containing a Riesz basis and preservation of this property under perturbations, SIAM J. Math. Anal. 29 (1998), no. 1, 266–278. MR 1617185, DOI 10.1137/S0036141095294250
- Peter G. Casazza and Ole Christensen, Approximation of the inverse frame operator and applications to Gabor frames, J. Approx. Theory 103 (2000), no. 2, 338–356. MR 1749970, DOI 10.1006/jath.1999.3350 CCK Casazza, P.G., Christensen, O., and Kalton, N.: Frames of translates. Collectanea Mathematica, to appear.
- Ole Christensen, Frames and pseudo-inverses, J. Math. Anal. Appl. 195 (1995), no. 2, 401–414. MR 1354551, DOI 10.1006/jmaa.1995.1363
- Ole Christensen, Frames and the projection method, Appl. Comput. Harmon. Anal. 1 (1993), no. 1, 50–53. MR 1256526, DOI 10.1006/acha.1993.1004
- Ole Christensen, Operators with closed range, pseudo-inverses, and perturbation of frames for a subspace, Canad. Math. Bull. 42 (1999), no. 1, 37–45. MR 1695886, DOI 10.4153/CMB-1999-004-5 C10 Christensen, O.: Finite-dimensional approximation of the inverse frame operator and applications to Weyl-Heisenberg frames and wavelet frames. J. Fourier Anal. Appl. 6 no. 1 (2000), p.79-91.
- Ole Christensen, Atomic decomposition via projective group representations, Rocky Mountain J. Math. 26 (1996), no. 4, 1289–1312. MR 1447588, DOI 10.1216/rmjm/1181071989
- Ole Christensen, Frames containing a Riesz basis and approximation of the frame coefficients using finite-dimensional methods, J. Math. Anal. Appl. 199 (1996), no. 1, 256–270. MR 1381391, DOI 10.1006/jmaa.1996.0140
- Ole Christensen, A Paley-Wiener theorem for frames, Proc. Amer. Math. Soc. 123 (1995), no. 7, 2199–2201. MR 1246520, DOI 10.1090/S0002-9939-1995-1246520-X
- Ole Christensen, Baiqiao Deng, and Christopher Heil, Density of Gabor frames, Appl. Comput. Harmon. Anal. 7 (1999), no. 3, 292–304. MR 1721808, DOI 10.1006/acha.1999.0271 CJ Christensen, O. and Jensen, T. K.: An introduction to the theory of bases, frames, and wavelets. Tech. Univ. of Denmark, 2000. 80 pages. Can be downloaded from the NuHAG homepage, http://tyche.mat.univie.ac.at. CL Christensen, O. and Lindner, A.: Frames of exponentials: lower frame bounds for finite subfamilies, and approximation of the inverse frame operator. Lin. Alg. and Its Appl. 323 (2001), p. 117-130.
- Charles K. Chui (ed.), Wavelets, Wavelet Analysis and its Applications, vol. 2, Academic Press, Inc., Boston, MA, 1992. A tutorial in theory and applications. MR 1161244, DOI 10.1016/B978-0-12-174590-5.50029-0
- Ingrid Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 36 (1990), no. 5, 961–1005. MR 1066587, DOI 10.1109/18.57199
- Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107, DOI 10.1137/1.9781611970104
- Ingrid Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), no. 5, 1271–1283. MR 836025, DOI 10.1063/1.527388
- Ingrid Daubechies, Stéphane Jaffard, and Jean-Lin Journé, A simple Wilson orthonormal basis with exponential decay, SIAM J. Math. Anal. 22 (1991), no. 2, 554–573. MR 1084973, DOI 10.1137/0522035
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Hans G. Feichtinger and K. H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions. I, J. Funct. Anal. 86 (1989), no. 2, 307–340. MR 1021139, DOI 10.1016/0022-1236(89)90055-4
- H. G. Feichtinger and A. J. E. M. Janssen, Validity of WH-frame bound conditions depends on lattice parameters, Appl. Comput. Harmon. Anal. 8 (2000), no. 1, 104–112. MR 1734849, DOI 10.1006/acha.2000.0281
- Hans G. Feichtinger and Thomas Strohmer (eds.), Gabor analysis and algorithms, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 1998. Theory and applications. MR 1601119, DOI 10.1007/978-1-4612-2016-9 Ga Gabor, D.: Theory of communications. J. IEE (London) 93 no. 3 (1946), p. 429-457. G Gröchenig, K. H.: Acceleration of the frame algorithm. IEEE Trans. Signal Processing 41 no. 12 (1993), p. 3331-3340. G2 Gröchenig, K. H.: Foundations of time-frequency analysis. Birkhäuser, 2001. HV He, X. and Volkmer, H.: Riesz bases of solutions of Sturm-Liouville equations. J. Fourier Anal. Appl., to appear.
- Christopher Heil, Jayakumar Ramanathan, and Pankaj Topiwala, Linear independence of time-frequency translates, Proc. Amer. Math. Soc. 124 (1996), no. 9, 2787–2795. MR 1327018, DOI 10.1090/S0002-9939-96-03346-1
- Christopher E. Heil and David F. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989), no. 4, 628–666. MR 1025485, DOI 10.1137/1031129
- Harro G. Heuser, Functional analysis, A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, 1982. Translated from the German by John Horváth. MR 640429
- S. Jaffard, A density criterion for frames of complex exponentials, Michigan Math. J. 38 (1991), no. 3, 339–348. MR 1116493, DOI 10.1307/mmj/1029004386
- A. J. E. M. Janssen, Signal analytic proofs of two basic results on lattice expansions, Appl. Comput. Harmon. Anal. 1 (1994), no. 4, 350–354. MR 1310658, DOI 10.1006/acha.1994.1021
- Hong Oh Kim and Jae Kun Lim, New characterizations of Riesz bases, Appl. Comput. Harmon. Anal. 4 (1997), no. 2, 222–229. MR 1448222, DOI 10.1006/acha.1997.0210
- Shidong Li, On general frame decompositions, Numer. Funct. Anal. Optim. 16 (1995), no. 9-10, 1181–1191. MR 1374971, DOI 10.1080/01630569508816668 Li Lindner, A.: A universal constant for exponential Riesz sequences. Z. Anal. Anwend. 19 (2000) no. 2, p. 553-559.
- Peter A. Linnell, von Neumann algebras and linear independence of translates, Proc. Amer. Math. Soc. 127 (1999), no. 11, 3269–3277. MR 1637388, DOI 10.1090/S0002-9939-99-05102-3
- Jayakumar Ramanathan and Tim Steger, Incompleteness of sparse coherent states, Appl. Comput. Harmon. Anal. 2 (1995), no. 2, 148–153. MR 1325536, DOI 10.1006/acha.1995.1010
- Amos Ron and Zuowei Shen, Weyl-Heisenberg frames and Riesz bases in $L_2(\mathbf R^d)$, Duke Math. J. 89 (1997), no. 2, 237–282. MR 1460623, DOI 10.1215/S0012-7094-97-08913-4
- Kristian Seip, On the connection between exponential bases and certain related sequences in $L^2(-\pi ,\pi )$, J. Funct. Anal. 130 (1995), no. 1, 131–160. MR 1331980, DOI 10.1006/jfan.1995.1066
- Kristian Seip, Density theorems for sampling and interpolation in the Bargmann-Fock space. I, J. Reine Angew. Math. 429 (1992), 91–106. MR 1173117, DOI 10.1515/crll.1992.429.91
- Kristian Seip, Density theorems for sampling and interpolation in the Bargmann-Fock space. I, J. Reine Angew. Math. 429 (1992), 91–106. MR 1173117, DOI 10.1515/crll.1992.429.91
- P. Wojtaszczyk, A mathematical introduction to wavelets, London Mathematical Society Student Texts, vol. 37, Cambridge University Press, Cambridge, 1997. MR 1436437, DOI 10.1017/CBO9780511623790
- Robert M. Young, An introduction to nonharmonic Fourier series, Pure and Applied Mathematics, vol. 93, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 591684
Additional Information
- Ole Christensen
- Affiliation: Technical University of Denmark, Department of Mathematics, Building 303, 2800 Lyngby, Denmark
- MR Author ID: 339614
- Email: Ole.Christensen@mat.dtu.dk
- Received by editor(s): July 25, 2000
- Published electronically: March 27, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 38 (2001), 273-291
- MSC (2000): Primary 41A58, 42C15
- DOI: https://doi.org/10.1090/S0273-0979-01-00903-X
- MathSciNet review: 1824891