Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: D. Evans and Y. Kawahigashi
Title: Quantum symmetries on operator algebras
Additional book information: Oxford Univ. Press, New York, 1998, xv + 829 pp., ISBN 0-19-851175-2, $200.00$

References [Enhancements On Off] (What's this?)

[1]
O. Bratteli, Inductive limits of finite dimensional C$^*$-algebras. Transactions AMS 171, (1972), 195-234. MR 0312282
[2]
A. Connes, Classification of injective factors. Ann. of Math. 104, (1976), 73-115. MR 0454659
[3]
A. Connes, Une classification des facteurs de type III. Ann. Sci. Ecole Norm Sup 6, (1973), 133-252. MR 0341115
[4]
A. Connes, Outer conjugacy classes of automorphisms of factors. Annales Scientifiques de l'éc. norm. sup. 8, (1975), 383-419. MR 0394228
[5]
S. Doplicher, R. Haag, J. Roberts, Local observables and particle statistics, I. Comm. Math. Phys. 23, (1971), 199-230. MR 0297259
[6]
E. Effros, D. Handelman and C. Shen, Dimension groups and their affine representations. Amer. J. Math 102, (1980), 385-407. MR 0564479
[7]
G. Elliott, On the classification of inductive limits of sequences of semisimple finite dimensional algebras. Journal of Algebra 38, (1976), 29-44. MR 0397420
[8]
K. Fredenhagen, K.-H. Rehren and B. Schroer, Superselection sectors with braid group statistics and exchange algebras. Comm. Math. Phys. 125, (1989), 201-226. MR 1016869
[9]
J. Glimm, A. Jaffe, Quantum physics. A functional integral point of view. Springer-Verlag, New York-Berlin, 1981. MR 0628000
[10]
F.M. Goodman, P. de la Harpe, and V.F.R. Jones, Coxeter graphs and towers of algebras, Springer-Verlag, 1989. MR 0999799
[11]
R. Haag, Local quantum physics, Springer, Berlin, 1992. MR 1182152
[12]
U. Haagerup, Principal graphs of subfactors in the index range $4 < [M:N] <3 + \sqrt{2}$ in: ``Subfactors", World Scientific, Singapore-New Jersey-London-Hong Kong (1994) 1-39. MR 1317352
[13]
-, Connes' bicentraliser problem and uniqueness of the injective factor of type III$_1$. Acta Math. 158, (1987), 95-148. MR 0880070
[14]
V. Jones, Index for subrings of rings. Contemporary Math. 43, (1985), 181-190. MR 0810651
[15]
R. Longo, Index of subfactors and statistics of quantum fields. I. Comm. Math. Phys. 126, (1989), 217-247. MR 1027496
[16]
D. McDuff, Uncountably many II$_1$ factors. Ann. of Math. 90, (1970), 372-377. MR 0259625
[17]
F.J. Murray and J. von Neumann, On rings of operators. IV. Ann. of Math. 44, (1943), 716-808. MR 5:101a
[18]
M. Nakamura, Z. Takeda, A Galois theory for finite factors. Proc. Japan Acad. 36, (1960), 258-260. MR 0123925
[19]
A. Ocneanu, Actions of discrete amenable groups on von Neumann algebras. Springer Lecture Notes in Mathematics, 1138, (1985). MR 0807949
[20]
A. Ocneanu, Quantized group, string algebras and Galois theory for algebras in Operator algebras and applications, vol. 2, L.M.S lecture note series, 136, (1988), 119-172. MR 0996454
[21]
S. Popa, An axiomatization of the lattice of higher relative commutants of a subfactor, Invent. Math 120, (1995), 427-445. MR 1334479
[22]
S. Sawin, Subfactors constructed from quantum groups. Amer. J. Math. 117, (1995), no. 6, 1349-1369. MR 1363071
[23]
J. von Neumann, On rings of operators. Reduction theory, Ann. of Math. 50, (1949), 401-485. MR 10:548a
[24]
-, On rings of operators, III, Ann. of Math. 41, (1940), 94-161.
[25]
-, Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren, Math. Ann. 102, (1929), 370-427.
[26]
-, On infinite direct products, Compositio Math 6, (1938), 1-77.
[27]
A. Wassermann, Operator algebras and conformal field theory. III. Fusion of positive energy representations of ${\rm LSU}(N)$using bounded operators. Invent. Math. 133, (1998), 467-538. MR 1645078
[28]
H. Wenzl, $C\sp *$ tensor categories from quantum groups. J. Amer. Math. Soc. 11, (1998), no. 2, 261-282. MR 1470857
[29]
F. Xu, Standard $\lambda$-lattices from quantum groups. Invent. Math. 134, (1998), 455-487. MR 1660937

Review Information:

Reviewer: Vaughan F. R. Jones
Affiliation: University of California, Berkeley
Email: vfr@math.berkeley.edu
Journal: Bull. Amer. Math. Soc. 38 (2001), 369-377
Published electronically: March 27, 2001
Review copyright: © Copyright 2001 American Mathematical Society