Book Review
The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.
Full text of review: PDF This review is available free of charge.
Book Information:
Authors: D. Evans and Y. Kawahigashi
Title: Quantum symmetries on operator algebras
Additional book information: Oxford Univ. Press, New York, 1998, xv + 829 pp., ISBN 0-19-851175-2, $200.00
- [1] Ola Bratteli, Inductive limits of finite dimensional 𝐶*-algebras, Trans. Amer. Math. Soc. 171 (1972), 195–234. MR 312282, https://doi.org/10.1090/S0002-9947-1972-0312282-2
- [2] A. Connes, Classification of injective factors. Cases 𝐼𝐼₁, 𝐼𝐼_{∞}, 𝐼𝐼𝐼_{𝜆}, 𝜆̸=1, Ann. of Math. (2) 104 (1976), no. 1, 73–115. MR 454659, https://doi.org/10.2307/1971057
- [3] Alain Connes, Une classification des facteurs de type 𝐼𝐼𝐼, Ann. Sci. École Norm. Sup. (4) 6 (1973), 133–252 (French). MR 341115
- [4] Alain Connes, Outer conjugacy classes of automorphisms of factors, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 3, 383–419. MR 394228
- [5] Sergio Doplicher, Rudolf Haag, and John E. Roberts, Local observables and particle statistics. I, Comm. Math. Phys. 23 (1971), 199–230. MR 297259
- [6] Edward G. Effros, David E. Handelman, and Chao Liang Shen, Dimension groups and their affine representations, Amer. J. Math. 102 (1980), no. 2, 385–407. MR 564479, https://doi.org/10.2307/2374244
- [7] George A. Elliott, On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra 38 (1976), no. 1, 29–44. MR 397420, https://doi.org/10.1016/0021-8693(76)90242-8
- [8] K. Fredenhagen, K.-H. Rehren, and B. Schroer, Superselection sectors with braid group statistics and exchange algebras. I. General theory, Comm. Math. Phys. 125 (1989), no. 2, 201–226. MR 1016869
- [9] James Glimm and Arthur Jaffe, Quantum physics, Springer-Verlag, New York-Berlin, 1981. A functional integral point of view. MR 628000
- [10] Frederick M. Goodman, Pierre de la Harpe, and Vaughan F. R. Jones, Coxeter graphs and towers of algebras, Mathematical Sciences Research Institute Publications, vol. 14, Springer-Verlag, New York, 1989. MR 999799
- [11] Rudolf Haag, Local quantum physics, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992. Fields, particles, algebras. MR 1182152
- [12] Uffe Haagerup, Principal graphs of subfactors in the index range 4<[𝑀:𝑁]<3+√2, Subfactors (Kyuzeso, 1993) World Sci. Publ., River Edge, NJ, 1994, pp. 1–38. MR 1317352
- [13] Uffe Haagerup, Connes’ bicentralizer problem and uniqueness of the injective factor of type 𝐼𝐼𝐼₁, Acta Math. 158 (1987), no. 1-2, 95–148. MR 880070, https://doi.org/10.1007/BF02392257
- [14] V. F. R. Jones, Index for subrings of rings, Group actions on rings (Brunswick, Maine, 1984) Contemp. Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 181–190. MR 810651, https://doi.org/10.1090/conm/043/810651
- [15] Roberto Longo, Index of subfactors and statistics of quantum fields. I, Comm. Math. Phys. 126 (1989), no. 2, 217–247. MR 1027496
- [16] Dusa McDuff, Uncountably many 𝐼𝐼₁ factors, Ann. of Math. (2) 90 (1969), 372–377. MR 259625, https://doi.org/10.2307/1970730
- [17] F.J. Murray and J. von Neumann, On rings of operators. IV. Ann. of Math. 44, (1943), 716-808. MR 5:101a
- [18] Masahiro Nakamura and Zirô Takeda, A Galois theory for finite factors, Proc. Japan Acad. 36 (1960), 258–260. MR 123925
- [19] Adrian Ocneanu, Actions of discrete amenable groups on von Neumann algebras, Lecture Notes in Mathematics, vol. 1138, Springer-Verlag, Berlin, 1985. MR 807949
- [20] Adrian Ocneanu, Quantized groups, string algebras and Galois theory for algebras, Operator algebras and applications, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 136, Cambridge Univ. Press, Cambridge, 1988, pp. 119–172. MR 996454
- [21] Sorin Popa, An axiomatization of the lattice of higher relative commutants of a subfactor, Invent. Math. 120 (1995), no. 3, 427–445. MR 1334479, https://doi.org/10.1007/BF01241137
- [22] Stephen Sawin, Subfactors constructed from quantum groups, Amer. J. Math. 117 (1995), no. 6, 1349–1369. MR 1363071, https://doi.org/10.2307/2375022
- [23] J. von Neumann, On rings of operators. Reduction theory, Ann. of Math. 50, (1949), 401-485. MR 10:548a
- [24] -, On rings of operators, III, Ann. of Math. 41, (1940), 94-161.
- [25] -, Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren, Math. Ann. 102, (1929), 370-427.
- [26] -, On infinite direct products, Compositio Math 6, (1938), 1-77.
- [27] Antony Wassermann, Operator algebras and conformal field theory. III. Fusion of positive energy representations of 𝐿𝑆𝑈(𝑁) using bounded operators, Invent. Math. 133 (1998), no. 3, 467–538. MR 1645078, https://doi.org/10.1007/s002220050253
- [28] Hans Wenzl, 𝐶* tensor categories from quantum groups, J. Amer. Math. Soc. 11 (1998), no. 2, 261–282. MR 1470857, https://doi.org/10.1090/S0894-0347-98-00253-7
- [29] Feng Xu, Standard 𝜆-lattices from quantum groups, Invent. Math. 134 (1998), no. 3, 455–487. MR 1660937, https://doi.org/10.1007/s002220050271
Review Information:
Reviewer: Vaughan F. R. Jones
Affiliation: University of California, Berkeley
Email: vfr@math.berkeley.edu
Journal: Bull. Amer. Math. Soc. 38 (2001), 369-377
MSC (2000): Primary 46Lxx, 81T75, 81T45, 81T05, 81T40, 81T08, 57R56
Published electronically: March 27, 2001
Review copyright: © Copyright 2001 American Mathematical Society