Book Review
The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.
Full text of review: PDF This review is available free of charge.
Book Information:
Authors: D. Evans and Y. Kawahigashi
Title: Quantum symmetries on operator algebras
Additional book information: Oxford Univ. Press, New York, 1998, xv + 829 pp., ISBN 0-19-851175-2, $200.00$
- Ola Bratteli, Inductive limits of finite dimensional $C^{\ast } $-algebras, Trans. Amer. Math. Soc. 171 (1972), 195–234. MR 312282, DOI https://doi.org/10.1090/S0002-9947-1972-0312282-2
- A. Connes, Classification of injective factors. Cases $II_{1},$ $II_{\infty },$ $III_{\lambda },$ $\lambda \not =1$, Ann. of Math. (2) 104 (1976), no. 1, 73–115. MR 454659, DOI https://doi.org/10.2307/1971057
- Alain Connes, Une classification des facteurs de type ${\rm III}$, Ann. Sci. École Norm. Sup. (4) 6 (1973), 133–252 (French). MR 341115
- Alain Connes, Outer conjugacy classes of automorphisms of factors, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 3, 383–419. MR 394228
- Sergio Doplicher, Rudolf Haag, and John E. Roberts, Local observables and particle statistics. I, Comm. Math. Phys. 23 (1971), 199–230. MR 297259
- Edward G. Effros, David E. Handelman, and Chao Liang Shen, Dimension groups and their affine representations, Amer. J. Math. 102 (1980), no. 2, 385–407. MR 564479, DOI https://doi.org/10.2307/2374244
- George A. Elliott, On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra 38 (1976), no. 1, 29–44. MR 397420, DOI https://doi.org/10.1016/0021-8693%2876%2990242-8
- K. Fredenhagen, K.-H. Rehren, and B. Schroer, Superselection sectors with braid group statistics and exchange algebras. I. General theory, Comm. Math. Phys. 125 (1989), no. 2, 201–226. MR 1016869
- James Glimm and Arthur Jaffe, Quantum physics, Springer-Verlag, New York-Berlin, 1981. A functional integral point of view. MR 628000
- Frederick M. Goodman, Pierre de la Harpe, and Vaughan F. R. Jones, Coxeter graphs and towers of algebras, Mathematical Sciences Research Institute Publications, vol. 14, Springer-Verlag, New York, 1989. MR 999799
- Rudolf Haag, Local quantum physics, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992. Fields, particles, algebras. MR 1182152
- Uffe Haagerup, Principal graphs of subfactors in the index range $4<[M:N]<3+\sqrt 2$, Subfactors (Kyuzeso, 1993) World Sci. Publ., River Edge, NJ, 1994, pp. 1–38. MR 1317352
- Uffe Haagerup, Connes’ bicentralizer problem and uniqueness of the injective factor of type ${\rm III}_1$, Acta Math. 158 (1987), no. 1-2, 95–148. MR 880070, DOI https://doi.org/10.1007/BF02392257
- V. F. R. Jones, Index for subrings of rings, Group actions on rings (Brunswick, Maine, 1984) Contemp. Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 181–190. MR 810651, DOI https://doi.org/10.1090/conm/043/810651
- Roberto Longo, Index of subfactors and statistics of quantum fields. I, Comm. Math. Phys. 126 (1989), no. 2, 217–247. MR 1027496
- Dusa McDuff, Uncountably many ${\rm II}_{1}$ factors, Ann. of Math. (2) 90 (1969), 372–377. MR 259625, DOI https://doi.org/10.2307/1970730 F.J. Murray and J. von Neumann, On rings of operators. IV. Ann. of Math. 44, (1943), 716-808. MR 5:101a
- Masahiro Nakamura and Zirô Takeda, A Galois theory for finite factors, Proc. Japan Acad. 36 (1960), 258–260. MR 123925
- Adrian Ocneanu, Actions of discrete amenable groups on von Neumann algebras, Lecture Notes in Mathematics, vol. 1138, Springer-Verlag, Berlin, 1985. MR 807949
- Adrian Ocneanu, Quantized groups, string algebras and Galois theory for algebras, Operator algebras and applications, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 136, Cambridge Univ. Press, Cambridge, 1988, pp. 119–172. MR 996454
- Sorin Popa, An axiomatization of the lattice of higher relative commutants of a subfactor, Invent. Math. 120 (1995), no. 3, 427–445. MR 1334479, DOI https://doi.org/10.1007/BF01241137
- Stephen Sawin, Subfactors constructed from quantum groups, Amer. J. Math. 117 (1995), no. 6, 1349–1369. MR 1363071, DOI https://doi.org/10.2307/2375022 J. von Neumann, On rings of operators. Reduction theory, Ann. of Math. 50, (1949), 401-485. MR 10:548a -, On rings of operators, III, Ann. of Math. 41, (1940), 94-161. -, Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren, Math. Ann. 102, (1929), 370-427. -, On infinite direct products, Compositio Math 6, (1938), 1-77.
- Antony Wassermann, Operator algebras and conformal field theory. III. Fusion of positive energy representations of ${\rm LSU}(N)$ using bounded operators, Invent. Math. 133 (1998), no. 3, 467–538. MR 1645078, DOI https://doi.org/10.1007/s002220050253
- Hans Wenzl, $C^*$ tensor categories from quantum groups, J. Amer. Math. Soc. 11 (1998), no. 2, 261–282. MR 1470857, DOI https://doi.org/10.1090/S0894-0347-98-00253-7
- Feng Xu, Standard $\lambda $-lattices from quantum groups, Invent. Math. 134 (1998), no. 3, 455–487. MR 1660937, DOI https://doi.org/10.1007/s002220050271
Review Information:
Reviewer: Vaughan F. R. Jones
Affiliation: University of California, Berkeley
Email: vfr@math.berkeley.edu
Journal: Bull. Amer. Math. Soc. 38 (2001), 369-377
Published electronically: March 27, 2001
Review copyright: © Copyright 2001 American Mathematical Society