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A MAD DAY’S WORK: FROM GROTHENDIECK TO CONNES
AND KONTSEVICH

THE EVOLUTION OF CONCEPTS OF SPACE AND SYMMETRY

PIERRE CARTIER

1. Introduction

To add to the chorus of praise by referring to my own experience would be of
little interest, but I am in no way forgetting the facilities for work provided by the
Institut des Hautes Études Scientifiques (IHES) for so many years, particularly the
constantly renewed opportunities for meetings and exchanges. While there have
been some difficult times, there is no point in dwelling on them.

One of the great virtues of the institute was that it erected no barriers between
mathematics and theoretical physics. There has always been a great deal of in-
terpenetration of these two areas of interest, which has only increased over time.
From the very beginning Louis Michel was one of the bridges due to his devotion to
group theory. At present, when the scientific outlook has changed so greatly over
the past forty years, the fusion seems natural and no one wonders whether Connes
or Kontsevich are physicists or mathematicians. I moved between the two fields for
a long time when to do so was to run counter to the current trends, and I welcome
the present synthesis.

Alexander Grothendieck dominated the first ten years of the institute, and I hope
no one will forget that. I knew him well during the 50s and 60s, especially through
Bourbaki, but we were never together at the institute—he left it in September 1970
and I arrived in July 1971. Grothendieck did not derive his inspiration from physics
and its mathematical problems. Not that his mind was incapable of grasping this
area—he had thought about it secretly before 1967—but the moral principles that
he adhered to relegate physics to the outer darkness, especially after Hiroshima. It
is surprising that some of Grothendieck’s most fertile ideas regarding the nature of
space and symmetries have become naturally wed to the new directions in modern
physics. It is this unexpected marriage—and its occasionally comical aspects—that
I would like to talk about here. “A mad day’s work”, as you know, is the subtitle
given to The Marriage of Figaro by Beaumarchais. From a certain distance there is
less cause for astonishment; the concepts of space and symmetry are so fundamental
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that they are necessarily central to any serious scientific reflection. Mathematicians
as influential as Bernhard Riemann or Hermann Weyl, to name only a few, have
undertaken to analyze these concepts on the dual levels of mathematics and physics.

2. A brief biography of Grothendieck

Grothendieck wrote a long, very personal memoir, Harvesting and Sowing (which
remains to date unpublished), but it would be difficult to find a narrative of his life
in it, especially his childhood. In the three volumes of the Grothendieck Festschrift
that I published on the occasion of his sixtieth birthday there is a brief intro-
duction and a rather long analysis by Dieudonné of Grothendieck’s work. The
narrative of his life there is rather cursory, besides being abridged in relation to his
early projects. In his autobiography [10] Laurent Schwartz mentions his student
Grothendieck, but only in passing and with many inaccuracies. What I know of
his life comes from Grothendieck himself, and that, supplemented by some other
testimony, forms the basis of the following narrative.

First of all, I should mention the remarkable personality of his parents. His
father’s name was Shapiro—I don’t know his first name. He was born around
1890 in a small town close to the point where Russia, Ukraine, and Belarus now
meet. All the Shapiros (there are numerous spellings of the name: Shapira, Szpiro,
. . . ) are descended from a group in a very small geographical region. Alexander
Grothendieck’s grandfather was probably a member of the community of Hasidic
Jews to which the Shapiros belonged. These were very pious Jews, who would
nowadays be called fundamentalists. Some of them were so “enamored of God” that
they had themselves walled into a small tower with a window where the faithful
came to offer them alms of food. While visiting Grothendieck I have seen a portrait
of his father, done by a co-detainee in the French camp of Vernet in 1942. It bears
a strong resemblance to the photograph of the son that we put at the front of the
Festschrift, the head shaved, with a fiery expression of the eyes.

As Alexander told me, his father’s political career constitutes a Who’s Who of
the European revolution from 1900 to 1940. Because of the borders that existed
at the time, he was born a Russian citizen. He participated in the abortive 1905
revolution against the tsar, along with the revolutionary currents of the period.
After the quashing of the revolution he was deported to Siberia, and spent more
than ten years in jail. He was released in 1917, when the exiles returned to Russia
to work for the overthrow of the Russian monarchy. Two revolutions occurred
in St. Petersburg: the Menshevik Revolution of February 1917 and the Bolshevik
Revolution of October 1917. Shapiro was one of the leaders of the “Socialist-
Revolutionary of the Left” Party. Allied at first with the Bolsheviks in October
1917, they soon clashed with Lenin and formed part of the many revolutionaries—
Bolsheviks and non-Bolsheviks alike—purged by Lenin.1

After the collapse of the two central empires, Europe was agitated by a number
of revolutionary movements: Rosa Luxemburg and the Spartakists in Berlin in
1919, the Munich Soviets, Bela Kun’s revolution in Hungary. To these we may
add the various events of the Russian Civil War, one of them being the Makhno
movement2 in Ukraine. Grothendieck’s father participated in all these movements.

1Shapiro is portrayed in the famous book of John Reed, Ten Days That Shook the World , a
slightly romanticized account of the revolution of October 1917.

2From 1920 to 1924 Ukraine enjoyed a brief independence. The war there was a tripartite
war among the Red Bolsheviks, the White Tsarists, and the Makhnovists. This last movement
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During the 1920s he lived mostly in Germany, participating in the political and
armed clashes of the leftist parties against Hitler and his Nazis. In Germany he
met Hanka Grothendieck, a Jewish woman from the north of Germany.3 In Berlin
on March 28, 1928, she had a son by Shapiro, the hero of our story. I know very
little about her previous child, an elder sister to Alexander. But very soon Hitler
came to power. After 1933 Germany was too dangerous for revolutionary Jews, and
the couple fled to France, leaving their son hidden in a libertarian private boarding
school near Hamburg.

In 1936 the Spanish Civil War broke out. Shapiro, like Simone Weil (sister of
the mathematician André Weil), joined the anarchist militias of the F.A.I. in the
struggle against Franco’s Fascists. Hanka Grothendieck seems to have remained in
France during this time. Whatever the case, she sent for her son in 1938. This was
the time of the rout of the Spanish Republicans, who fled to the Midi. Refugee
camps were opened, some of which became detention camps—I would not go so far
as to say concentration camps. At Vernet and at Gurs in the Pyrenées camps were
hastily formed to hold temporarily all the “dangerous foreigners”: German Jews,
Spanish anarchists, and Trotskyites.4 The declaration of war on September 3, 1939,
did nothing to improve the lot of these outcasts, as one can well imagine. After the
capitulation in June 1940 many prisons were opened, among them that of André
Weil in Rouen, and the Grothendieck family was temporarily out of confinement.
Starting in October 1940 the Vichy government of Marshal Pétain promulgated
anti-Jewish laws that were also enforced in the unoccupied zone. Shapiro was
brought to the Vernet camp, and with other detainees, sent directly to Ausschwitz,
where he died in 1942—one of the most shameful episodes in French history.

Grothendieck and his mother survived only with difficulty in anti-Semitic Vichy
France. Their salvation came from the Protestant resistance movement in Cévennes.
Pastor Trocmé, director of the private Protestant Lyceum in Chambon-sur-Lignon
(called Collège Cévenol), transformed this charming vacation resort, frequented by
high Protestant society, into a center of both spiritual and military resistance to
the Nazi occupiers.5 Grothendieck was a pupil at Collège Cévenol and was housed
at the Swiss Foyer, which gave shelter to proscribed children of all origins.6 After
receiving the “baccalauréat” degree7 and, I think, with Protestant recommenda-
tions, he became a student at Montpellier. It has often been said that he was
ahead of his teachers and that he was already exhibiting a taste for extreme gener-
alization in mathematics. He arrived in Paris, having finished his licensure, in the

combined some aspects of peasant jacquerie with Ukrainian nationalism. The Spanish anar-
chists claimed it, rightly or wrongly, as a model of a spontaneous peasant uprising. In the now-
independent Ukraine, Makhno is revered as a national hero, at least by the more nationalist
parties.

3I have often been asked if the name “Grothendieck” is Dutch. The “plattdeutsch” of northern
Germany is linguistically close to Flemish.

4Contrary to frequent claims in French propaganda, these camps functioned from late 1938 on,
not starting in September 1939. On the latter date new camps were opened for “enemy nationals”.

5The Wehrmacht never dared to risk going into these mountainous regions, where people prided
themselves on having learned the spirit of resistance after the revocation of the Edict of Nantes
in 1684!

6In the 1960s I made the acquaintance of a former teacher at Collège Cévenol who was on the
eve of retirement. I arranged a meeting between Grothendieck and his former teacher, which was
a very emotional experience for both of them.

7In French parlance, that is the final exam at high school, giving access to all French
universities.
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autumn of 1948, equipped with a letter of recommendation to Élie Cartan8 from
his Montpellier teacher.

Here ends the infancy narrative of the gospel and begins the public career of the
prophet. It was to last from 1949 to 1970. It is too well known for me to repeat
it, and we may refer to the narrative of Dieudonné, even if it is somewhat brief.
We shall mention only that Grothendieck was interested in functional analysis from
1950 to 1957, that his dissertation [7] is a masterpiece, but that the article that
had the most subsequent influence was undoubtedly [8], the point of departure of
the geometric theory of Banach spaces. Then, from 1956 to 1970, he completely re-
worked homological algebra and algebraic geometry. His scholarly career essentially
ends at that point.

I would like to try to analyze the reasons for this abrupt end to a career so
astonishing and fertile at the age of 42. The reason given was that he had discovered
that the Ministry of Defense had been subsidizing the institute. The IHES’s finances
are less obscure nowadays than they were in the time of Motchane, and, as far as
I know, there is still today a modest financial line marked D.R.E.T.9 In order to
understand the vehemence of Grothendieck’s reaction, one must take account of his
past and the political situation of the time. He is the son of a militant anarchist
who had devoted his life to revolution. This was a father of whom he had very little
direct knowledge; he knew him mostly through his mother’s adulation. He lived as
an outcast throughout his entire childhood and was a “displaced person”10 for many
years, traveling with a United Nations passport (also known as a Nanssen passport).
He had always been uncomfortable frequenting the “better” places and felt more at
ease among the poor, even the impoverished. The solidarity of outcasts had created
in him a strong feeling of compassion. He lived his principles, and his home was
always wide open to “stray cats”. In the end he came to consider Bures a gilded
cage that kept him away from real life. To this reason he added a failure of nerve, a
doubt as to the value of scientific activity. Starting in 1957 at a Bourbaki Congress,
he confided his doubts to me and told me that he was considering activities other
than mathematics.11 One should perhaps add the effect of a well-known “Nobel
syndrome”. After his dedication at the Moscow Congress in 1966, where he received
the Fields Medal, when he was laboring over the last (decisive) stages of the proof
of the Weil conjectures and perhaps beginning to perceive that Deligne would be
needed to complete in 1974 the program he had set for himself, and perhaps yielding
to the pernicious view that sets 40 as the age when mathematical creativity ceases,
he may have believed that he had passed his peak and that thenceforth he would
be able only to repeat himself with less effectiveness.

The mood of the time also had a strong influence. The disaster that had been
the second Viet Nam War from 1963 to 1972 had awakened many consciences. All
around him his friends were struggling against the Viet Nam War in great numbers;

8The famous geometer Élie Cartan was already aged and feeble, but his son Henri Cartan was
the rising star (and the godfather) of French mathematics in the 1940s. Henri Cartan always
maintained close relations with the Protestant areas in the south of France and was the natural
host for Grothendieck in Paris.

9Acronym for “Direction de la Recherche et des Études Techniques”, a small funding agency
of the Ministry of Defense.

10His citizenship papers disappeared in the Berlin apocalypse of 1945.
11His mother wrote poems and novels, in German, of course. He was thinking of pursuing this

route.
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a significant number of French mathematicians took concrete action and traveled
to Hanoi, as he (and I) did. The student uprising of 1968 (in France) was to
a large extent the result of this movement. Its anarchist aspect held attractions
for him and forced him to admit that he had ceased being an outcast and had
become a scientific mandarin. The movement of May 1968 aroused others among
the Bourbaki group, such as Chevalley, Samuel, and Godement. The cold war was
at its height, and the risk of a nuclear confrontation was very real. The problems of
overpopulation, pollution, and uncontrolled development—everything that is now
classified as ecology—had also begun to attract attention. There were plenty of
reasons to call science into question!

He reacted with his impetuous nature and founded the small “Survival” sect.
On more than one occasion, he exasperated those who shared his politics with his
excesses and his inept tactics.12 His route is quite close to that of Simone Weil,
and political anarchism took on more and more a religious tone in him. But, while
Simone Weil’s Catholicism was violently anti-Semitic (in 1942!), Grothendieck’s
Buddhism bears a strong resemblance to the practices of his Hasidic ancestors.13

For a long time he was receptive to all sorts of marginal “hippies”, which resulted
in his indictment and an absurd trial in 1977 due to a 1945 regulation that made it
a misdemeanor to meet with a foreigner. He enjoyed playing the role of a modern
Socrates, and was given a suspended sentence of six months in prison and a fine of
20,000 francs. It seems to me that his definitive break with science dates from this
incident. He withdrew more and more into his own tent. After 1993 he no longer
had a postal address and settled in a hamlet in the Pyrenées. Very few managed to
see him there. If I can believe his most recent visitors, he is obsessed with the Devil,
whom he sees at work everywhere in the world, destroying the divine harmony and
replacing 300,000 km/sec by 299,887 km/sec as the speed of light!

He remains, however, the same Grothendieck who contributed to the renown of
the IHES during its first ten years of existence. He is the same person to whom we
owe the magnificent ideas on space and symmetry that I am now about to develop.

3. On the nature of space and its points

The central problem is that of the points of space. The debate goes back to
Leibniz and Newton. For Leibniz the constituent of all things, both material and
spiritual, is provided by monads, which are windowless (we would say they have no
internal structure), and the only things that matter are their mutual relationships.
Here we seem to recognize the first “definition” given by Bourbaki at the beginning
of his discussion of set theory:

A set is composed of elements capable of having certain properties
and having certain relations among themselves or with elements of
other sets.

From this ontological point of view the elements, or points, are pre-existent and
the problem is to organize them, to give them a structure. From the physical point
of view, one postulates with Newton the existence of an absolute space, in which

12There are two famous incidents: in Nice in September 1970 and at Anvers in July 1972.
He alienated a “public mathematical opinion” that was very receptive to his thesis by his brash
proclamations and ruined the delicate political arrangements of his friends; he destroyed months
of effort in ten minutes.

13For a considerable time he practiced dietary restrictions that could be ascribed to choice,
Judaism, or Buddhism.
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the phenomena occur: positions are predetermined, destined to be inhabited by the
accidents of matter.

In Mach’s philosophy, on the contrary, space is determined by matter ; the most
advanced mathematical form is certainly furnished by the Einstein gravitational
equations:

Rµν −
1
2
gµνR = 8πκTµν .(1)

The right-hand side, Tµν , is determined by the matter that happens to be present,
or, in more modern form, it is a function of the nongravitational fields, while the
left-hand side is a function of only the gravitational field gµν , identified with the
metric tensor that defines the geometry. In contrast to Newton’s views, the space
is no longer a mere receptacle, but an actor in physics, as the bending of light rays
in a gravitational field shows. For Mach and Einstein, a point then only appears as
a label making it possible to identify an event.

A monad has no structure, nor has a point. The same is true of the atom in the
original Greek conceptions. It is indivisible and hence cannot reveal any internal
mechanism, has no parts, but that does not prevent its having external characteris-
tics, a size certainly, a shape perhaps.14 However, the history of physics has gotten
us accustomed to Russian doll games, the chemist’s molecule being composed of
atoms, which themselves possess an electron cloud and a nucleus, the latter being
composed of protons and neutrons, which turned out to be sets of quarks, provi-
sionally assumed to be indivisible. On the mathematical level, the modern view of
the continuum presupposes only two levels. A straight line, for example, is made
up of pre-existent points. The classical view in the eighteenth century assumes,
on the contrary, a hierarchy of infinitesimals and infinities of various orders. To a
given order the infinitesimals of the immediately higher order appear to be points
without structure, until we open the box that they constitute and that reveals in-
finitesimals of a higher order playing provisionally the role of points. Brouwer, and
to a lesser extent Hermann Weyl, attempted to base a mathematical theory of the
continuum on these ideas.

The numerous known axiomatic presentations of geometry encounter similar
problems. For Euclid there are geometric figures, and a point is merely one element
of a figure, the most elementary, perhaps, since it is assumed to have no dimension:
neither length, nor breadth, nor thickness. Figures generate one another. A given
line D is defined by the property of passing through two given points P and Q, but
a point P is defined as the intersection of two lines D and ∆. A circle is defined
by giving its center and radius . . . . There is, to be sure, a determinacy property:
two lines, or two circles, that have the same points are equal, but it is not in the
spirit of Euclid to regard a line as a set of points. A figure in the sense of Euclid
is more than a simple set of points. This traditional point of view is genetic: lines
are generated. The modern point of view is ontological : points pre-exist and have
no identity of their own; like the monads, they are merely subject to relations. The
same kind of duality occurs in formal logic. For the syntactical point of view there
are basic formulas and rules for generating new ones, which increase the stock

14We recall the expression hooked atoms, which has passed into current usage.
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of available formulas without limit. In the semantic point of view this potential
infinity of formulas is opposed by the convenient fiction of the actual infinity of all
the formulas, considered to have been constructed once and for all.15

The theory of lattices was invented by Birkhoff and developed by Glivenko during
the 1920s, partly in order to provide an axiom system for projective geometry. In
this system linear manifolds of all dimensions are placed on the same level. The
fundamental relation is incidence (or inclusion): the straight line ∆ lies in the plane
Π. After that, we obtain the derived concepts of intersection and join (for example,
the plane defined by a point and a line). The natural outcome of this direction is
furnished by the combinatorial geometries of Rota and Crapo (also called matroids)
[4]. The algebraization of logic by Boole and Venn (in the nineteenth century) is
controlled by the same strategy: the basic given is that of a proposition, or assertion,
and implication of propositions plays the role of incidence of linear manifolds.

In order to apply the same methods in topology one must describe a space not by
its points but by the class of its open sets, the third example of a lattice. It is in the
work of Ehresmann that one finds this point of view explicitly, but Brouwer’s ideas,
reworked and deepened by Weyl in Das Kontinuum, also lead to it. In reflecting
on the well-known problem of the infinity of decimal expansions, Brouwer criticized
the possibility of affirming the equality of two numbers,16 but he held that the
notion of the open interval ]1

4 ,
3
4 [ was legitimate, that is, that it is possible to verify

the inequalities 1
4 < x < 3

4 (if they hold) by a finite process. But the decisive
step was taken by Grothendieck. Inspired by Riemann’s idea of a surface stacked
over the plane,17 he replaced the open sets of a space X by spaces stacked over
it. The same thing can be expressed by considering the category F(X) of sheaves
over X . The constructions over topological spaces translate into (and are replaced
by) constructions on categories of sheaves. By an additional stage of abstraction
Grothendieck, followed by Lawvere and Tierney, proposed an abstract concept of
“topos” that was for him the ultimate generalization of the concept of space. But
the concept of topos is sufficiently general for the category of “all” sets to constitute
a topos. After Cantor and Hilbert, who refused to be driven from Cantor’s paradise,
it became customary to fit all of mathematics into the framework of the particular
topos of sets. Grothendieck claimed the right to transcribe mathematics into any
topos whatever. Brouwer and Heyting had long since remarked that the rules of
the intuitionistic propositional calculus resemble the rules for manipulation of open
sets. This becomes clear in the theory of topos: In any topos T there is a logical
object Ω, whose “elements” are the truth values of the topos. When T is the topos
of sets, one has the classical values (true/false), but when the topos T is the topos
of sheaves over a space X , the truth values correspond to the open sets of X .18

15In algebra the potential point of view consists of defining a group or an algebra by generators
and relations; the actual point of view consists of defining it as a set of elements structured by
operations.

16For the verification presumes that one can verify an infinite number of equalities among the
decimal digits.

17Which gives the definitive interpretation of multi-valued analytic (or holomorphic) functions.
18This opens the possibility of a logic in which hic and nunc are considered. An attempt

has been made, with J. Bénabou, to provide “topical” foundations for legal logic, especially in a
situation involving federal or international law.
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4. Toward the concept of spectrum

Let us provisionally accept Grothendieck’s point of view on space. A space X is
described using the topos F(X) of sheaves over X . What is the role of points? If
a is a point of X , one can first associate with it the “filter” Ua of open subsets U
of X containing a, that is, the open neighborhoods of a.19 Identifying the point a
with the filter Ua leads to a fruitful strategy. To enrich the space X , we introduce
ideal points in correspondence with other filters. It is in this way that Bourbaki
constructs the completion of a uniform space and that various compactifications
(such as the Stone–Čech compactification) are defined, as well as various boundaries
in potential theory or in the theory of deterministic or stochastic dynamic systems.

A similar point of view prevails in the theory of models in logic. A model M of a
set P of propositions has the effect of validating certain propositions A, which one
denotes as

M ` A.
Instead of the model M , one may legitimately consider the class PM of proposi-
tions validated by M , which is also a filter.20 The model is consistent if not all
propositions are valid in it. The same thing can be expressed by saying that the
model M does not validate simultaneously a proposition A and its negation A. In
contrast, the model M is categorical if for each proposition A it validates either A
or A. In a categorical model one can then introduce the valuation v(A) (or, more
precisely, vM (A)), which has the value 1 if M validates A and 0 otherwise. We
have the following algebraic properties:

v(A) + v(B) = v(A ∧B) + v(A ∨B)(2)

v(T ) = 1, v(F ) = 0(3)

which can be taken as the definition of a valuation.21 This concept admits several
variants:

1. a valuation on the set of open sets of a space X corresponds to an ultrafilter
(of open sets) over X ;

2. instead of requiring the valuation v(A) of a proposition to assume only the
values 0 and 1, one may postulate more generally that v(A) is a real number
between 0 and 1. This is roughly the strategy of “fuzzy” logic.22

We shall now apply a trick that is one of the spectacular successes of twentieth-
century mathematics. Let us again consider an algebra P of propositions23 and
the set Ω of all valuations on P . With each proposition A we associate by duality
the set [A] of all valuations v such that v(A) = 1, or, what amounts to the same
thing, the set of all categorical models that validate A. The correspondence A→← [A]
makes it possible to interpret the algebra of propositions P as a class of subsets of

19The filter property of Ua means the following: If U and V belong to Ua, so do the intersection
U ∩ V and all open sets U ′ containing U .

20This means that, if the propositions A and B are in PM , the same is true of the conjunction
A ∧ B (read A and B) and any proposition A′ implied by A.

21Here T (F ) denotes any true (false) proposition.
22Carathéodory and Kappos used this method to construct an alternative to the axiomatiza-

tion of probability due to Kolmogorov. Despite the philosophical interest of this method, it is
technically more cumbersome than Kolmogorov’s approach, especially for the study of stochastic
processes.

23More precisely, a Boolean algebra.
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Ω, conjunction and disjunction becoming respectively the intersection and union of
sets:

[A ∧B] = [A] ∩ [B], [A ∨B] = [A] ∪ [B].(4)

This is the statement of the Stone representation theorem, a model for many further
results.24 The space Ω is called the Stone space of the Boolean algebra P ; we shall
call it, somewhat anachronistically, the spectrum of P .

The development of quantum theory during the 1930s and 1940s led to the
concept of a state, which is a new embodiment of the concept of a valuation. From
now on we assume that the space X is compact,25 and associate with it the Banach
space A = C0(X ;C) formed of continuous functions with complex values on X ,
with the norm

‖f‖ = sup
{
|f(a)| : a ∈ X

}
.(5)

One can also introduce the product f1f2 of two functions and the complex conjugate
f∗ of f . A state on A is a linear form η on A satisfying the following rules:26

η(ff∗) ≥ 0, η(1) = 1.(6)

A state η is pure if it is never the mixture η = 1
2 (η1 + η2) of two distinct states.

The Gelfand representation theorem asserts that the formula

f(a) = η(f) for every f in A(7)

defines a one-to-one correspondence between the points a of X and the pure states
η of the Banach algebra A. One thus has a means of recovering the space X using
the Banach algebra A.

The concept of a filter of a Boolean algebra is the analog of the concept of an
ideal in a commutative Banach algebra. In both cases there is an inclusion relation
and hence the concept of a maximal filter or ideal.27 The spectrum of the Boolean
algebra P (or the Banach algebra A = C0(X ;C)) can then be interpreted as the
set of maximal filters (or ideals). In number theory the idea of considering the set
of prime ideals in the ring OK of algebraic integers in a number field K (a finite
algebraic extension of the field Q of rational numbers) is due to Dedekind. For him
this set is the arithmetic analog of the set of points of an algebraic curve. Great
effort was made during the 1950s to provide the broadest possible foundations to
algebraic geometry. The following are two important stages:

1. Consider an algebraically closed field k and an algebraic subvariety X of the
affine space kn of coordinates T1, . . . , Tn. Let a be the ideal of polynomials
that vanish identically on X , and let A be the quotient ring k[T1, . . . , Tn]/a.
The intrinsic geometric properties of X (independent of the immersion of X
in kn) translate into properties of the ring A. In particular, the points of
X correspond to maximal ideals of A. (This is the content of the Hilbert
Nullstellensatz.) The analogy with the Gelfand representation theorem is
obvious; it is one of the points of departure of Serre’s theory of algebraic
coherent sheaves [11].

24This result also shows a posteriori that the point of view of Carathéodory and Kappos on

probability is not more general than that of Kolmogorov.
25The case when X is locally compact makes certain minor changes necessary.
26The function having the constant value 1 on X is denoted 1.
27Maximal filters are usually called ultrafilters.
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2. Consider now an affine or projective algebraic variety X28 defined over a field
k. The field k is not assumed algebraically closed, but X is irreducible. One
can define the field K = k(X) of rational functions on X and, for each point x
of X , the ring Ox of rational functions defined at the point x. More generally,
if Y is an irreducible subvariety of X , we define the local ring of X along Y ,
denoted OX,Y . Zariski had developed the theory of these local rings, but it is
Chevalley who, in his seminar [2] of 1956, made the collection of OX,Y , which
he called the scheme of X (for variable Y ), the basis of the theory. He gave
an axiomatic characterization of these schemes.

It was necessary to synthesize these points of view and to eliminate the preceding
restrictions (where k is algebraically closed or X is irreducible). After various
preliminary attempts29 Grothendieck understood how to define the general notion
of scheme using the Zariski topology30 and a sheaf of local rings. One must, of
course, understand that the space Grothendieck associated with an algebraic variety
is not the set of its own points, but the set of its irreducible subvarieties. That is
the meaning of the word scheme! As for the points, see the next section.

Now one final remark on the term spectrum. In physics each type of atom or
molecule possesses a characteristic spectrum formed by its emission or absorption
lines. Quantum mechanics interprets these as the characteristic values of an opera-
tor, the Hamiltonian, acting on a certain Hilbert space. It is thus natural to speak
of the discrete spectrum of the Hamiltonian. The emission or absorption bands
correspond to a continuous spectrum. In the early 1930s von Neumann succeeded
brilliantly in defining the concept of a self-adjoint (unbounded) operator H on a
Hilbert space h and its spectrums. The contribution of Gelfand in 1940 was in asso-
ciating a commutative Banach algebra A with the operator H and an isomorphism
of A onto C0(S;C). From that point on the evolution of the meaning of the word
spectrum can be understood. For Grothendieck the spectrum of a commutative
ring consists of its prime ideals (as in the case of Dedekind).

5. Points and representations

If all points are intrinsically indistinguishable from one another, they can differ
only in position. In other words, there exists an archetypal point, of which the
other points are representations. Let us translate this idea into more mathematical
language. We introduce a space consisting of a single point 1. For each point a of
a space X there exists a unique mapping, or representation, of the space 1 into the
space X mapping the one point of 1 to the point a of X . Category theory is the
mathematical expression of the idea of representation (or transformation). We have
a class of objects (or spaces) and transformations f of an object X into an object

28Or even an abstract variety in the sense of Weil.
29Serre first considered the set of maximal ideals of a commutative ring A subject to certain

restrictions. Martineau then remarked to him that his arguments remained valid for any commu-
tative ring, provided one takes all prime ideals instead of only maximal ideals. I then proposed a
definition of schemes equivalent to the definition of Grothendieck. In my dissertation I confined
myself to a framework similar to that of Chevalley, so as to avoid an excessively long exposition
of the preliminaries!

30In the case of Chevalley one has a collection (Vs)s∈S of local rings having the same field of
fractions K. A subset U of S is open in the Zariski topology if there is a subset F of K such that
s ∈ U if and only if F ∩ Vs is nonempty. One then defines O(U) = ∩

s∈U
Vs, and this collection of

rings defines the structure sheaf over S.
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Y , with the possibility of composing these transformations. The “idea” of category
theory is to consider only spaces and transformations rather than points. However,
in the majority of categories there exists an object such as 1 characterized by the
fact that there is exactly one transformation from X into 1, whatever the object
X . One can thus call any transformation of 1 into X a point of X , but it may very
well happen that an object has no points in this sense.31

Let us examine the case of Boolean algebras. We take as basic operations in a
Boolean algebraP the conjunction A∧B and the disjunction A∨B. The comparison
relation A ≤ B is indeed synonymous with A = A ∧ B and also with B = A ∨ B.
A representation f of one Boolean algebra P into another P ′ is a mapping f of P
into P ′ that obeys the rules32

f(A ∨B) = f(A) ∨ f(B), f(A ∧B) = f(A) ∧ f(B).(8)

There exists a Boolean algebra, denoted 1, which is composed of two elements 0
and 1 with the rules33

0 ∧ 0 = 0 ∧ 1 = 1 ∧ 0 = 0 1 ∧ 1 = 1
1 ∨ 1 = 0 ∨ 1 = 1 ∨ 0 = 1 0 ∨ 0 = 0

from which follows 0 ≤ 1. For every Boolean algebra P there is one and only
one representation of 1 in P , and the valuations of P are the representations of P
into 1. To conform to the general scheme described above, we use the procedure
of dualization or “arrow reversal”. We call a “representation” of P into P ′ a
“noitatneserper” of P ′ into P . The spectrum of P is then the set of noitatneserpers
of 1 into P .

The necessity of reversing the sense of the arrows shows up more clearly in the
case of the Gelfand representation. IfX and Y are compact spaces, every continuous
mapping u of X into Y defines in the inverse sense a representation u∗ of the algebra
B = C0(Y ;C) into the algebra A = C0(X ;C). Conversely, every representation
Φ34 of the algebra B into the algebra A arises from a unique continuous mapping
u from X into Y via the formula Φ = u∗. Corresponding to the one-point space is
the algebra C of complex numbers, and the space X can be interpreted as the set
of representations of the algebra A = C0(X ;C) into the algebra C. More generally,
if A is a commutative Banach algebra with unit 1, the pure states of A are the
representations of A into C, which gives a new interpretation of the spectrum of A.

Algebraic geometry had long encountered the problem of equations having no
solutions, that is, spaces having no points. Let us consider for example an imaginary
circle in the plane; one may assume that its equation is written as

x2 + y2 + a2 = 0.(9)

To be sure, if the real number a 6= 0 is given, there is no point with real coordinates
x and y satisfying (9). The complex numbers were invented to provide solutions to
such equations. In Grothendieck’s point of view, one first introduces the quotient

31For example, in the category of bundles over a fixed base S the “points” of a bundle E are
global sections. Many interesting bundles have no such section. The Hopf bundle (the sphere S3

of dimension 3, fibered over S2 with fibers homemorphic to S1) has none. For physicists the Hopf
bundle is the Dirac monopole.

32The relation (4) can thus be interpreted in terms of representation of Boolean algebras.
33If we interpret 1 in the usual manner as the value “true” and 0 as “false”, this Boolean

algebra gives universal rules for the manipulation of true and false.
34In other words, Φ is a linear mapping of B into A such that Φ(bb′) = Φ(b)Φ(b′) and Φ(1B) =

1A, denoting by 1A the identity element of A and by 1B the identity element of B.
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algebra O = R[X,Y ]/(X2 + Y 2 + a2). The circle Γ of (9) is then the spectrum of
the ring O, that is the set of its prime ideals. The complex solutions of (9), in other
words the complex points of the circle Γ, correspond to the R-linear representations
of O into C. This suggests that we introduce, for each commutative algebra A over
R, the set Γ(A) of R-linear representations of O into A, which we shall call the
A-points of Γ. The “real” circle Γ (that is, the circle whose equation has real
coefficients) has no R-points, but it has plenty of C-points. In the case of an
arbitrary scheme, the consideration of the A-points for all commutative algebras
makes it possible to invoke a familiar situation.35 For example, if G is a group
scheme, the A-points form a group G(A), in the standard sense, for any A.

Consideration of the topos F(X) of sheaves on a topological space X makes it
possible, following Grothendieck, to give another extension of the notion of a point.
If X and Y are two topological spaces and u a continuous mapping of X into Y ,
we associate with u a covariant functor u∗ and a contravariant functor u∗. If F is
a sheaf over X and G a sheaf over Y , then u∗F is a sheaf over Y and u∗G a sheaf
over X . One can easily describe u∗F by the formula

u∗F (V ) = F
(
u−1(V )

)
for any open set V in Y . Moreover, the functors u∗ and u∗ are adjoints, which
means that the representations F → u∗G of sheaves over X are in one-to-one
correspondence with the representations u∗F → G of sheaves over Y . This property
contains an implicit characterization of the functor u∗.

The topos Set of sets can be regarded as the topos of sheaves over a space
reduced to a point. According to what has just been said, the choice of a point a
of a topological space X therefore defines two adjoint functors:

F(X)
a∗

�
a∗

Set.

The functor a∗ associates with each sheaf over X its fiber36 at the point a. This cir-
cumstance explains why Grothendieck and Deligne spoke interchangeably of “point”
or “fiber functor”.

6. Toward non-commutative geometry

We continue to pursue the theme of spaces without points, or with too few points.
Consider, for example, a group G, assumed discrete, operating on a space ∗ reduced
to a single point. What can be said about the space of orbits of G in the space ∗?

35This idea actually goes back to André Weil [13], who introduced it into differential geometry.
For example, if A has base 1, ε over R with ε2 = 0, the A-points of a variety X are the points of
the tangent bundle TX to X. More generally, the spaces of jets are handled in this way. In my
1958 dissertation I introduced a similar idea for algebraic groups, which made it possible for me to
handle efficiently what are known as inseparable isogenies. The question involves representations
f : G → H of algebraic groups that are bijections or points, yet not isomorphisms. By point I
mean the k-points, where k is the base field assumed to be algebraically closed and of characteristic
p > 0.

36By definition it is the inductive limit of the sets F (U) when U ranges over all open neigh-
borhoods of a.



FROM GROTHENDIECK TO CONNES AND KONTSEVICH 401

At first sight there is only one orbit, and the group G has disappeared. However,
three more subtle answers are known:

1. According to Armand Borel [1], one should not distinguish two homotopically
equivalent spaces. The space ∗ is therefore replaced by a contractible space
EG on which G operates freely. The space of orbits of G in ∗ is then inter-
preted as the base BG = EG/G of EG considered as a principal bundle with
group G. More generally, if the group G operates on a space X , the “true”
orbit space, denoted X//G, is the quotient of X ×EG by the diagonal action
of G. What has just been described is the classifying space method.

2. According to Grothendieck [T] one considers the topos EG of sets on which
the group G operates. These G-sets are to be interpreted as sheaves over the
mythical space of orbits of G in ∗. In view of the preceding construction, one
may call EG the classifying topos of G, since BG is called the classifying space
of G. More generally, let us assume that the group G operates continuously
on a topological space X . One can define the naive space of orbits X/G,
but it may happen that the space X/G is pathological and has only “trivial”
open sets (the entire space and the empty set).37 In this case the information
provided by the sheaves over X/G will treat this space as a single point.
In that case Grothendieck proposed replacing the sheaves over X/G by the
sheaves F over X , with the compatible action of G over X and F . The topos
F(X/G) is replaced by the topos F(X ;G) of G-equivariant sheaves over X .

The classifying space BG has homology groups, which are precisely the
homology groups of the group G in the algebraic sense. The sheaf cohomology
techniques have a generalization to topos. Applied to the topos F(X ;G), they
provide the definition of equivariant cohomology groups for the G-space X .
They can be interpreted as cohomology groups for the nonexistent spaceX/G.

3. We shall now describe the method of Alain Connes [NC]. On a discrete space
X having a finite number of points, a bundle F of vector spaces over X is
precisely the set of fibers (Fa)a∈X , and the sections of F form the vector
space Γ(F ) = ⊕

a∈X
Fa. The algebra CX of functions on X operates on this

space by multiplication. In Hilbertian analysis, we thus have the following
translations:
(a) a bundle over a locally compact space X corresponds to an involutive

representation38 of the algebra C0
∞(X ;C) of continuous functions on X

that vanish at infinity;
(b) a group action39 of G corresponds to a unitary representation of the group

G in a Hilbert space.

37As a simple example, X is a circle and G consists of the rotations through an angle nθ, where
n is an arbitrary integer and θ/2π is irrational.

38If A is a C∗-algebra and h a Hilbert space, an involutive representation of A in h is a linear
mapping π : A→ L(h) such that

π(ST ) = π(S)π(T ), π(1) = 1, π(S∗) = π(S)∗.

The set of bounded linear operators on h is denoted L(h).
39The group G is assumed locally compact. In particular, it may be discrete.
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To each locally compact group G, as is known, one can associate40 a C∗-algebra
C∗(G) such that the unitary representations of G correspond to the involutive
representations of C∗(G). In Connes’ perspective this algebra C∗(G) corresponds
to the classifying space BG. When the group G is commutative with Pontryagin
dual Ĝ, the C∗-algebras C∗(G) and C0

∞(Ĝ;C) are isomorphic. One would thus
expect some close connections between BG and Ĝ, and such is indeed the case if
G = Zn, whence BG = Ĝ = U(1)n. It should be noted, nevertheless, that BG is
defined only up to a homotopy, while Ĝ is defined uniquely.

Returning to the case of a group G acting on a space X , we find that the analog
of a G-equivariant bundle (or sheaf ) over X is provided by a compatible pair of
representations, one of C0

∞(X ;C), the other of G, on the same Hilbert space. It
is known how to define a C∗-algebra C∗(X ;G) whose involutive representations
correspond to the pairs described above. This algebra plays the role of the algebra
of continuous functions on the space of orbits of G in X.

One can handle the case of foliations similarly. We summarize the situation in
the following diagram:

G-space X variety X with foliation F

↘ ↙
Topological groupoid G

| |
Grothendieck | | Connes

↓ ↓
Topos of G-sets

?
← −−−−−−− →

Tapia
C∗-algebra C∗(G)

The two theories are unified by the groupoid concept. Groupoids are generaliza-
tions of groups, and a considerable portion of the machinery of groups extends to
them. Hence, in particular, we have the notion of G-set and the C∗-algebra C∗(G)
(if G is locally compact). The C∗-algebra C∗(X ;G) is precisely the C∗-algebra
C∗(G), where G is a locally compact groupoid constructed from the action of G on
X . The other cases are similar.

We have the following natural concepts of equivalence:

1. homotopy, for topological spaces;
2. topos equivalence;
3. Morita equivalence for C∗-algebras.

The “topological” invariants must be compatible with these equivalences. The
“pathological” character of the action of a group or foliation is translated as the fact
that the associated topos (or C∗-algebra) is not equivalent to that of an ordinary
space. In the case of a C∗-algebra, this is translated as the fact that it is not
equivalent in the sense of Morita to a commutative C∗-algebra, in other words,
that it is essentially noncommutative. One can now understand the sense of the
expression “noncommutative geometry”. A comparison between the points of view

40The space of functions on G that are integrable in the sense of Lebesgue with respect to Haar
measure is denoted L1(G). This space is a Banach algebra with convolution as the multiplication.
A state η on L1(G) is a continuous linear functional of norm 1 on L1(G) such that η(f ∗ f∗) ≥ 0
for any f ∈ L1. The spectral norm is defined as the least upper bound ‖f‖S of the numbers

η(f ∗ f∗)1/2 as η ranges over the set of states. The algebra C∗(G) is then obtained as the
completion of L1(G) in the spectral norm.
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of Grothendieck and Connes has barely been sketched out (see the paper [12] of J.
Tapia).

What are the points of a generalized space? We defined the points of a topos
in Section 5. The points of a C∗-algebra are equivalence classes of irreducible
involutive representations.41

7. Internal symmetries

We begin to suspect that not all points are alike—there are several species of
monads. The question thus arises of finding out whether a point can have symme-
tries. Let us consider the simple case of a finite group G operating on a compact
manifold X and the naive space of orbits X/G. If ξ is the orbit G · x of a point
x of X , there are numerous reasons to consider that the stabilizer42 Gx of x in
G is the symmetry group of the point ξ of X/G. In particular, the naive point of
∗/G (see Section 6) has G as its symmetry group. That explains the inadequacy
of the point of view of sheaves over the naive quotient X/G. The peculiarity of a
sheaf is that what is known at a point is known unambiguously at all sufficiently
near points, and that excludes the possibility of branching.43 These simple remarks
were developed in Satake’s theory of V -manifolds (called “orbifolds” by Thurston),
which have found numerous applications in mathematical physics.

The question of internal symmetries is very acute in elementary particle physics.
The Kaluza–Klein model was introduced in the 1920s in an attempt to unify electro-
magnetism and gravitation. By way of illustration, let us first consider the surface
of a circular cylinder with axis D and radius r (the set of points in 3-dimensional
space lying at distance r from the line D). Every plane perpendicular to the axis
cuts the cylinder in a circle of radius r, and the cylinder is the union of these
pairwise-disjoint circles. If the radius r is very small, each of the circles can be
identified with its center, and the cylinder becomes indistinguishable from its axis.
The transversal dimension has become compactified. To be sure, each circle has
its rotation group Γ, and this group is not to be forgotten when the circle is con-
tracted to its center. One can thus introduce Γ as the group of internal symmetries
of each point of the line D by adjoining an additional dimension. In more tech-
nical terms, the cylinder appears as the principal bundle with base D and group
Γ. Returning to the Kaluza–Klein model, we replace the 4-dimensional space-time
M4 by a 5-dimensional space by blowing up each point of M4 into a “very small”
circle. The group of internal symmetries thus associated with each point is the
preceding group Γ = SO (2), which appears implicitly in the change of gauge of
electromagnetic potential.44

41By the Gelfand–Naimark–Segal theorem, for any pure state η on the C∗-algebra A there
exists an irreducible involutive representation πη : A → L(hη) and a vector ψη in the Hilbert
space hη such that η(S) = 〈ψη |πη(S)|ψη〉 for S in A. We introduce an equivalence relation on the
set of pure states by setting η ≡ η′ if πη is equivalent to πη′ . Then a point of A is an equivalence

class of pure states.
42The set of elements g of G such that g · x = x.
43The phenomenon of branching is well known for analytic functions of a complex variable.

At a branch point z0 of order n it is necessary to use power series in (z− z0)
1
n , but this nth root

has n branches near z0. These n branches permute cyclically among themselves, whence arises
the idea of a cyclic group at the point z0 whose order n is the order of the branching.

44Denoting the components of electromagnetic potential by Aµ, we find that the components
of the electromagnetic field are Fµν = ∂µAν − ∂νAµ. The indices µ and ν assume the values
0, 1, 2, 3 corresponding to coordinates x0, x1, x2, x3 in space-time, and we have used the notation
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In an attempt to take account of other fields besides the electromagnetic field
and other particles besides electrons and photons, the same strategy was applied,
with the group SO (2) (isomorphic to U (1)) being replaced by the groups SU (2)
and SU (3), or even more complicated groups such as E8 in certain models. The
4-dimensional space M4 is replaced by a space of 4 + d dimensions, where d is the
dimension of the group. In the 1960s an attempt was made to unify the Poincaré
group of external symmetries of space-time with the group of internal symmetries.
This unification was thwarted for mathematical reasons.45

Grothendieck’s point of view makes it possible to introduce the symmetry group
of a point. The fundamental remark is the following: suppose one is given two
categories C and C′. One can define transformations of categories (called “func-
tors”), say T : C → C′, and also transformations between functors according to the
following scheme:

T
−→

C ⇓ Φ C′
−→
T ′

.

Functors can be composed, as can transformations between functors. One can
therefore speak of the automorphism group of a functor, T : C → C′, namely
the transformations T Φ⇒T that have an inverse. Since a point in the sense of
Grothendieck is interpreted as a functor between topos, the trick has worked: the
point has a symmetry group. For example, if X is a topological space and a a point
of X , Grothendieck defines the fundamental group π1(X ; a) of X at the point a as
the automorphism group of the fiber functor a∗ restricted to the subtopos Flc(X)
of locally constant sheaves over X

a∗ : Flc(X)→ Set.

In other words, the fundamental group π1(X ; a) is regarded as the symmetry group
of the point a. Thanks to the introduction of the spectrum of a field, the Galois
group Gal (K/k) of a field extension can also be interpreted as the symmetry group
of a point!

The same idea can be applied to reinterpret the Tannaka–Krein duality theorem.
Let G be a compact group. We can introduce the category RepG whose objects
are continuous finite-dimensional linear representations of the group G.46 We also
introduce the category Vectf formed of complex finite-dimensional vector spaces
and linear transformations. The “fiber” functor Φ : RepG → Vectf associates
with a representation π the vector space Vπ on which it acts. The group G can

∂µ = ∂/∂xµ. A change of gauge amounts to replacing Aµ by Aµ+∂µΦ, which makes no change in
the Fµν . But prescribing Φ defines at each point x of M4 a rotation through angle eΦ(x)/~ of the
circle expressing the internal symmetry of x. We remind the reader that e denotes the elementary
electric charge, and ~ = h/2π, where h is the Planck constant.

45By classical theorems of Élie Cartan, one cannot construct any group that is a genuine
extension of the external group by the internal group. The best one can do is to form the direct
product, that is, to forbid them to interact.

46Let π be a representation of G on the space Vπ and π′ on the space Vπ′ . A transformation
of π into π′ is a linear mapping T of Vπ into Vπ′ such that Tπ(g) = π′(g)T for every element g of
G.



FROM GROTHENDIECK TO CONNES AND KONTSEVICH 405

be recovered as the automorphism group of this functor Φ that preserves the tensor
product in a suitable sense.47

The interpretation of this theorem is that a group G exists only by virtue of its
category of representations RepG. Indeed, the use of groups to classify elementary
particles is analogous. In the chain of broken symmetries for hadrons

SU (3) ⊃ SU (2) ⊃ U (1),

what matters are only the representations of these groups and their branching
rules48 to organize the families of hadrons into multiplets; then separate the mem-
bers of the multiplet by their electric charge (the group U (1) corresponding to
electromagnetism, as explained above).

The problem thus arises of giving an axiomatic characterization of categories of
the form RepG. Such a characterization was obtained independently by Deligne in
the Grothendieck Festschrift [5], as an extension of Grothendieck’s program, and
by the physicists Doplicher and Roberts [6], who were motivated by the theory of
gauge fields.

8. “I have a dream”

Grothendieck’s broken dream was to develop a theory of motives, which would in
particular unify Galois theory and topology. At the moment we have only odd bits
of this theory, but I would like to conclude with a magnificent, quite unexpected
development, in which physics and mathematics come together again.

Euler was the first to study the series ζ(k) =
∞∑
n=1

n−k for k = 2, 3, . . . . In

particular, the formulas ζ(2) = π2/6 and ζ(4) = π4/90 are due to him. He was the
first to consider multiple series of the same type (the Euler–Zagier numbers [14]):

ζ(k1, . . . , kr) =
∑

n−k1
1 · · ·n−krr ,(10)

where the summation extends over all integers n1, . . . , nr such that n1 > n2 >
· · ·nr ≥ 1. The product of two such numbers is a linear combination of numbers of
the same type. We quote the first interesting case:

ζ(a)ζ(b) = ζ(a+ b) + ζ(a, b) + ζ(b, a),(11)

which can be proved by elementary manipulations of series. It is conjectured that
all polynomial relations with rational coefficients among the numbers ζ(k1, . . . , kr)
can be derived from these product relations and others of the same type, known
explicitly. To give an idea of the magnitude of this conjecture, I note that it
implies that the numbers ζ(3), ζ(5), . . . , are transcendental. For a long time it was
only known that ζ(3) is irrational (Apéry, 1979), but Rivoal has recently extended
this result by proving that infinitely many numbers in the sequence ζ(3), ζ(5), . . . ,
are irrational [R].

47An automorphism of the functor Φ is defined by giving, for each representation π of G, an
invertible linear operator Sπ in the space Vπ on which π acts. We impose the rule TSπ = Sπ′T
for every transformation T of π into π′. Compatibility with the tensor product is expressed by the
formula Sπ⊗π′ = Sπ ⊗ Sπ′ . The duality theorem then states that if Sπ satisfies these conditions,

there exists a unique element g of G such that Sπ = π(g) for every representation π.
48Which describe how an irreducible representation of a group decomposes into irreducible

representations of a subgroup after the representation of the group has been restricted to the
subgroup.
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We denote by Ad the set of linear combinations of the numbers ζ(k1, . . . , kr)
with rational coefficients, with k1 + · · ·+ kr equal to d. The product formulas show
that we have

Ad · Ad′ ⊂ Ad+d′,

so that the direct sum A of A0 = Q, A1, A2, . . . , is a commutative algebra over
the field Q of rational numbers. Drinfeld has introduced a group GRT1 called the
(graded) Grothendieck–Teichmüller group. It is a scheme of groups over the field
Q, and it therefore has a Lie algebra, denoted grt1. To describe this Lie algebra
would require me to give precise information on the Knizhnik–Zamolodchikov equa-
tions, which play a fundamental role in the theory of conformal fields. It is conjec-
tured that the Lie algebra grt1 is a free Lie algebra with generators ψ3, ψ5, ψ7, . . . ,
corresponding in a natural way to the numbers ζ(3), ζ(5), ζ(7), . . . . Moreover,
GRT1 plays the role of the Galois group for transcendental numbers of the form
ζ(k1, . . . , kr), since it acts (conjecturally) on the algebra A by automorphisms.49

At almost the same time, at the institute, Connes and Kontsevich had just
discovered a natural occurrence of the group GRT1 in fundamental problems of
physics:

1. Connes and Kreimer [3] discovered how to make the Lie algebra grt1 (and
other similar Lie algebras) act on the algebra corresponding to Feynman di-
agrams. It represents a new type of symmetry, not acting on any particular
model of field theory, but sweeping away a whole class of possible Lagrangians.

2. Kontsevich [9] has recently solved the problem of quantization by deformation
for Poisson manifolds. The set of possible quantizations has a symmetry
group, and Kontsevich conjectures that it is isomorphic to GRT .

In both problems the numbers ζ(k1, . . . , kr) arise as the values of certain inte-
grals.

Could one dream of a better marriage, for the 40th anniversary of the Insti-
tut des Hautes Études Scientifiques and the 30th anniversary of the break with
Grothendieck?

9. Postscript (December 2000)

The present paper was written (in French) in September 1998. I took the oppor-
tunity of the present translation into English to correct a few inaccuracies in the
biographical sketch of Alexander Grothendieck. I thank the friends and colleagues
who helped me to remove these inaccuracies, but I’m afraid that not everything
has been corrected.

I would not alter today my views about the space problem, as expounded above.
But the last section, “I have a dream”, ought to be very much elaborated. During
the past two years, enormous progress has been made, both in the mathematics
and in the physical understanding.

From the mathematical side, we have learned to distinguish between the numer-
ical polyzeta numbers ζ(k1, . . . , kr) and their symbolic counterparts Z(k1, . . . , kr).
These are symbols subjected only to the known polynomial relations among the
ζ(k1, . . . , kr). From the definitions of these numbers by series and by integrals,
one derives two families of quadratic relations. Moreover, by studying carefully

49For the benefit of specialists, we mention that the preceding is a quick, informal exposition
of the theory of “mixed Tate motives”.
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the regularization of the divergent series ζ(1, k2, . . . , kr), one derives a third set of
relations. These three kinds of relations are the ones used for the definition of the
symbolic Z(k1, . . . , kr). It has been announced by Jean Ecalle (Orsay, France) that
the symbolic polyzetas make a free polynomial algebra Asymb. A complete proof
has been given in the dissertation of my student Georges Racinet, together with
the definition of a new group scheme DM0, conjecturally identical with the group
GRT1. Much remains to be proved, for instance the transcendance conjecture, that
numerical evaluation Z(k1, . . . , kr) 7→ ζ(k1, . . . , kr) is an injective map from Asymb

into R. Let us mention only that T. Rivoal [R] has enormously improved on Apéry’s
classical result that ζ(3) is irrational (1979). I refer the reader to a forthcoming
review article [PC] on this subject.

From the physics point of view, the work of Connes and Kreimer about renormal-
ization in quantum field theory has been deepened. The so-called “forest formula”
of Zimmermann was translated into the language of Hopf algebras by Kreimer, and
Connes introduced the efficient tool of Birkhoff factorization. Inspired by the theory
of algebraic groups, I reformulated everything in terms of exponential of triangular
matrices. Together with my student Marcus Berg, we made it a practical tool for
calculation of counter-terms in renormalized field theories. At a deeper level, I was
more prophetic than I had thought, and there are many reasons to believe in a
“cosmic Galois group” acting on the fundamental constants of the physical theo-
ries. This group should be closely related to the group GRT1 and might eventually
help understanding of the numerical value of the fine structure constant

α =
e2

4πε0~c
∼ 1
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,

a long-standing puzzle.
To conclude in an optimistic mood, the “dream” I perceived two years ago as a

ghost dimly visible in the fog might become true and has already motivated a lot
of interesting research.
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[13] A. Weil, “Théorie des points proches sur les variétés différentiables,” Colloque de Géométrie
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