Which are the simplest algebraic varieties?
Author:
János Kollár
Journal:
Bull. Amer. Math. Soc. 38 (2001), 409-433
MSC (2000):
Primary 14-01, 14E08, 14E30, 14G05, 14J26, 14P25; Secondary 11D25, 11G35, 30F10, 57N10
DOI:
https://doi.org/10.1090/S0273-0979-01-00917-X
Published electronically:
June 12, 2001
MathSciNet review:
1848255
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
This paper is a slightly revised version of the notes prepared in connection with the AMS Colloquium Lectures delivered in New Orleans, January 2001.
- [BPV84] W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574
- [BenedettiMarin92] Riccardo Benedetti and Alexis Marin, Déchirures de variétés de dimension trois et la conjecture de Nash de rationalité en dimension trois, Comment. Math. Helv. 67 (1992), no. 4, 514–545 (French). MR 1185807, https://doi.org/10.1007/BF02566517
- [BCR87] J. Bochnak, M. Coste, and M.-F. Roy, Géométrie algébrique réelle, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 12, Springer-Verlag, Berlin, 1987 (French). MR 949442
- [Clebsch1866] A. Clebsch, Die Geometrie auf den Flächen dritter Ordnung, J. f.r.u.a. Math. 65 (1866) 359-380
- [ClemensGriffiths72] C. Herbert Clemens and Phillip A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281–356. MR 302652, https://doi.org/10.2307/1970801
- [Comessatti13] A. Comessatti, Fondamenti per la geometria sopra superfizie razionali dal punto di vista reale, Math. Ann. 73 (1913) 1-72
- [Comessatti14] A. Comessatti, Sulla connessione delle superfizie razionali reali, Annali di Math. 23(3) (1914) 215-283
- [Dolgachev66] I. Dolgachev, On Severi's conjecture concerning simply connected algebraic surfaces, Soviet Math. Dokl. 7 (1966) 1169-1171
- [Faltings83] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349–366 (German). MR 718935, https://doi.org/10.1007/BF01388432
- [FMT89] Jens Franke, Yuri I. Manin, and Yuri Tschinkel, Rational points of bounded height on Fano varieties, Invent. Math. 95 (1989), no. 2, 421–435. MR 974910, https://doi.org/10.1007/BF01393904
- [Harnack1876] A. Harnack, Über die Vieltheiligkeit der ebenen algebraischen Kurven, Math. Ann. 10 (1876) 189-198
- [HarrisTschinkel00] J. Harris and Yu. Tschinkel, Rational points on quartics. Duke Math. J. 104 (2000) 477-500 CMP 2001:01
- [Hartshorne77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
- [Hassett00] B. Hassett, Special cubic fourfolds. Compositio Math. 120 (2000) 1-23 CMP 2000:07
- [Hempel76] John Hempel, 3-Manifolds, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. Ann. of Math. Studies, No. 86. MR 0415619
- [Iskovskikh67] V. A. Iskovskikh, Rational surfaces with a pencil of rational curves, Math. USSR Sb. 3 (1967) 563-587
- [Iskovskikh80] V. A. Iskovskih, Minimal models of rational surfaces over arbitrary fields, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 19–43, 237 (Russian). MR 525940
- [Klein1876] F. Klein, Über eine neuer Art von Riemannschen Flächen, Math. Ann. 10 (1876) 398-416, Reprinted in : F. Klein, Gesammelte Mathematische Abhandlungen, Springer, 1922, vol. II.
- [Knutson71] Donald Knutson, Algebraic spaces, Lecture Notes in Mathematics, Vol. 203, Springer-Verlag, Berlin-New York, 1971. MR 0302647
- [KodairaSpencer58] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. I, II, Ann. of Math. (2) 67 (1958), 328–466. MR 112154, https://doi.org/10.2307/1970009
- [Kollár91] János Kollár, Flips, flops, minimal models, etc, Surveys in differential geometry (Cambridge, MA, 1990) Lehigh Univ., Bethlehem, PA, 1991, pp. 113–199. MR 1144527
- [Kollár95] János Kollár, Nonrational hypersurfaces, J. Amer. Math. Soc. 8 (1995), no. 1, 241–249. MR 1273416, https://doi.org/10.1090/S0894-0347-1995-1273416-8
- [Kollár96] János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180
- [Kollár98a] J. Kollár, Low degree polynomial equations, in: European Congress of Math. Birkhäuser, 1998, 255-288 MR 98m:14075
- [Kollár98b] János Kollár, Real algebraic threefolds. I. Terminal singularities, Collect. Math. 49 (1998), no. 2-3, 335–360. Dedicated to the memory of Fernando Serrano. MR 1677128
- [Kollár98c] J. Kollár, The Nash conjecture for algebraic threefolds, ERA of AMS 4 (1998) 63-73
- [Kollár99a] János Kollár, Real algebraic threefolds. II. Minimal model program, J. Amer. Math. Soc. 12 (1999), no. 1, 33–83. MR 1639616, https://doi.org/10.1090/S0894-0347-99-00286-6
- [Kollár99b] János Kollár, Real algebraic threefolds. III. Conic bundles, J. Math. Sci. (New York) 94 (1999), no. 1, 996–1020. Algebraic geometry, 9. MR 1703903, https://doi.org/10.1007/BF02367244
- [Kollár00a] János Kollár, Real algebraic threefolds. IV. Del Pezzo fibrations, Complex analysis and algebraic geometry, de Gruyter, Berlin, 2000, pp. 317–346. MR 1760882
- [Kollár00b] J. Kollár, Unirationality of cubic hypersurfaces, preprint, alg-geom/0005146
- [Kollár00c] J. Kollár, The Nash conjecture for nonprojective threefolds, preprint, alg-geom/0009108
- [Kollár-Mori98] János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959
- [KoMiMo92] János Kollár, Yoichi Miyaoka, and Shigefumi Mori, Rationally connected varieties, J. Algebraic Geom. 1 (1992), no. 3, 429–448. MR 1158625
- [Kollár-Smith97] J. Kollár and K. Smith, Rational and Non-rational Algebraic Varieties (e-prints: alg-geom/9707013)
- [Manin66] Yu. I. Manin, Rational surfaces over perfect fields (in Russian), Publ. Math. IHES 30 (1966) 55-114
- [Manin72] Yu. I. Manin and M. Hazewinkel, Cubic forms: algebra, geometry, arithmetic, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York, 1974. Translated from the Russian by M. Hazewinkel; North-Holland Mathematical Library, Vol. 4. MR 0460349
- [Mikhalkin97] G. Mikhalkin, Blow up equivalence of smooth closed manifolds, Topology, 36 (1997) 287-299
- [Milnor63] J. Milnor, Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. MR 0163331
- [Milnor64] J. Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964), 275–280. MR 161339, https://doi.org/10.1090/S0002-9939-1964-0161339-9
- [Milnor-Stasheff74] John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 76. MR 0440554
- [Moishezon67]
B. Moishezon, On
-dimensional compact varieties with
algebraically independent meromorphic functions, Amer. Math. Soc. Transl. 63 (1967) 51-177
- [Mori82] Shigefumi Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. (2) 116 (1982), no. 1, 133–176. MR 662120, https://doi.org/10.2307/2007050
- [Morin40] U. Morin, Sull' unirazionalità dell'ipersuperficie algebrica di qualunque ordine e dimensione sufficientemente alta, in: Atti dell II Congresso Unione Math. Ital. pp. 298-302, 1940
- [Nash52] J. Nash, Real algebraic manifolds, Ann. Math. 56 (1952) 405-421 MR 14:403b
- [Nikulin79] V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111–177, 238 (Russian). MR 525944
- [Plücker1839] J. Plücker, Theorie der algebraischen Kurven, Bonn, 1839
- [Rolfsen76] Dale Rolfsen, Knots and links, Publish or Perish, Inc., Berkeley, Calif., 1976. Mathematics Lecture Series, No. 7. MR 0515288
- [Schläfli1863] L. Schläfli, On the distribution of surfaces of the third order into species, Phil. Trans. Roy. Soc. London, 153(1863)193-241. Reprinted in : L. Schläfli, Gesammelte Mathematische Abhandlungen, Birkhäuser, 1953, vol. II.
- [Scott83] Peter Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), no. 5, 401–487. MR 705527, https://doi.org/10.1112/blms/15.5.401
- [Segre42] B. Segre, The non-singular cubic surfaces, Clarendon Press, 1942 MR 4:254b
- [Segre51] B. Segre, The rational solutions of homogeneous cubic equations in four variables, Notae Univ. Rosario 11 (1951) 1-68 MR 13:678d
- [Serre79] Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237
- [Shafarevich72] I. R. Shafarevich, Basic algebraic geometry, Springer-Verlag, New York-Heidelberg, 1974. Translated from the Russian by K. A. Hirsch; Die Grundlehren der mathematischen Wissenschaften, Band 213. MR 0366917
- [Tognoli73] A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 27 (1973), 167–185. MR 396571
- [Viro90] O. Ya. Viro, Real plane algebraic curves: constructions with controlled topology, Algebra i Analiz 1 (1989), no. 5, 1–73 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 5, 1059–1134. MR 1036837
- [Viterbo98] C. Viterbo, Symplectic real algebraic geometry, to appear
- [Zeuthen1874] H.G. Zeuthen, Sur les différentes formes des courbes du quatrième ordre, Math. Ann. 7(1874) 410-432
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 14-01, 14E08, 14E30, 14G05, 14J26, 14P25, 11D25, 11G35, 30F10, 57N10
Retrieve articles in all journals with MSC (2000): 14-01, 14E08, 14E30, 14G05, 14J26, 14P25, 11D25, 11G35, 30F10, 57N10
Additional Information
János Kollár
Affiliation:
Department of Mathematics, Princeton University, Princeton, NJ 08544-1000
Email:
kollar@math.princeton.edu
DOI:
https://doi.org/10.1090/S0273-0979-01-00917-X
Received by editor(s):
February 7, 2001
Published electronically:
June 12, 2001
Article copyright:
© Copyright 2001
American Mathematical Society