Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


On the mathematical foundations of learning
HTML articles powered by AMS MathViewer

by Felipe Cucker and Steve Smale PDF
Bull. Amer. Math. Soc. 39 (2002), 1-49 Request permission
  • Lars V. Ahlfors, Complex analysis, 3rd ed., International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978. An introduction to the theory of analytic functions of one complex variable. MR 510197
  • P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
  • Andrew R. Barron, Complexity regularization with application to artificial neural networks, Nonparametric functional estimation and related topics (Spetses, 1990) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 335, Kluwer Acad. Publ., Dordrecht, 1991, pp. 561–576. MR 1154352
  • Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275, DOI 10.1007/978-3-642-66451-9
  • M. Š. Birman and M. Z. Solomjak, Piecewise polynomial approximations of functions of classes $W_{p}{}^{\alpha }$, Mat. Sb. (N.S.) 73 (115) (1967), 331–355 (Russian). MR 0217487
  • Christopher M. Bishop, Neural networks for pattern recognition, The Clarendon Press, Oxford University Press, New York, 1995. With a foreword by Geoffrey Hinton. MR 1385195
  • Åke Björck, Numerical methods for least squares problems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. MR 1386889, DOI 10.1137/1.9781611971484
  • Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale, Complexity and real computation, Springer-Verlag, New York, 1998. With a foreword by Richard M. Karp. MR 1479636, DOI 10.1007/978-1-4612-0701-6
  • Bernd Carl and Irmtraud Stephani, Entropy, compactness and the approximation of operators, Cambridge Tracts in Mathematics, vol. 98, Cambridge University Press, Cambridge, 1990. MR 1098497, DOI 10.1017/CBO9780511897467
  • Peter Craven and Grace Wahba, Smoothing noisy data with spline functions. Estimating the correct degree of smoothing by the method of generalized cross-validation, Numer. Math. 31 (1978/79), no. 4, 377–403. MR 516581, DOI 10.1007/BF01404567
  • M. J. Donahue, L. Gurvits, C. Darken, and E. Sontag, Rates of convex approximation in non-Hilbert spaces, Constr. Approx. 13 (1997), no. 2, 187–220. MR 1437210, DOI 10.1007/s003659900038
  • Lokenath Debnath and Piotr Mikusiński, Introduction to Hilbert spaces with applications, 2nd ed., Academic Press, Inc., San Diego, CA, 1999. MR 1670332
  • J. P. Dedieu and M. Shub, Newton’s method for overdetermined systems of equations, Math. Comp. 69 (2000), no. 231, 1099–1115. MR 1651750, DOI 10.1090/S0025-5718-99-01115-1
  • Ronald A. DeVore and George G. Lorentz, Constructive approximation, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303, Springer-Verlag, Berlin, 1993. MR 1261635, DOI 10.1007/978-3-662-02888-9
  • Jean Duchon, Splines minimizing rotation-invariant semi-norms in Sobolev spaces, Constructive theory of functions of several variables (Proc. Conf., Math. Res. Inst., Oberwolfach, 1976) Lecture Notes in Math., Vol. 571, Springer, Berlin, 1977, pp. 85–100. MR 0493110
  • D. E. Edmunds and H. Triebel, Function spaces, entropy numbers, differential operators, Cambridge Tracts in Mathematics, vol. 120, Cambridge University Press, Cambridge, 1996. MR 1410258, DOI 10.1017/CBO9780511662201
  • Theodoros Evgeniou, Massimiliano Pontil, and Tomaso Poggio, Regularization networks and support vector machines, Adv. Comput. Math. 13 (2000), no. 1, 1–50. MR 1759187, DOI 10.1023/A:1018946025316
  • David Haussler, Decision-theoretic generalizations of the PAC model for neural net and other learning applications, Inform. and Comput. 100 (1992), no. 1, 78–150. MR 1175977, DOI 10.1016/0890-5401(92)90010-D
  • Harry Hochstadt, Integral equations, Pure and Applied Mathematics, John Wiley & Sons, New York-London-Sydney, 1973. MR 0390680
  • A. N. Kolmogorov and S. V. Fomīn, Introductory real analysis, Dover Publications, Inc., New York, 1975. Translated from the second Russian edition and edited by Richard A. Silverman; Corrected reprinting. MR 0377445
  • A. N. Kolmogorov and V. M. Tihomirov, $\varepsilon$-entropy and $\varepsilon$-capacity of sets in function spaces, Uspehi Mat. Nauk 14 (1959), no. 2 (86), 3–86 (Russian). MR 0112032
  • Wee Sun Lee, Peter L. Bartlett, and Robert C. Williamson, The importance of convexity in learning with squared loss, IEEE Trans. Inform. Theory 44 (1998), no. 5, 1974–1980. MR 1664079, DOI 10.1109/18.705577
  • Peter Li and Shing-Tung Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3-4, 153–201. MR 834612, DOI 10.1007/BF02399203
  • George G. Lorentz, Manfred v. Golitschek, and Yuly Makovoz, Constructive approximation, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 304, Springer-Verlag, Berlin, 1996. Advanced problems. MR 1393437, DOI 10.1007/978-3-642-60932-9
  • Albert Eagle, Series for all the roots of the equation $(z-a)^m=k(z-b)^n$, Amer. Math. Monthly 46 (1939), 425–428. MR 6, DOI 10.2307/2303037
  • Jean Meinguet, Multivariate interpolation at arbitrary points made simple, Z. Angew. Math. Phys. 30 (1979), no. 2, 292–304 (English, with French summary). MR 535987, DOI 10.1007/BF01601941
  • MinskyPapert M.L. Minsky and S.A. Papert, Perceptrons, MIT Press, 1969. Niyogi P. Niyogi, The informational complexity of learning, Kluwer Academic Publishers, 1998.
  • A. Pietsch, Eigenvalues and $s$-numbers, Mathematik und ihre Anwendungen in Physik und Technik [Mathematics and its Applications in Physics and Technology], vol. 43, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1987. MR 917067
  • Allan Pinkus, $n$-widths in approximation theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 7, Springer-Verlag, Berlin, 1985. MR 774404, DOI 10.1007/978-3-642-69894-1
  • PoggioShelton T. Poggio and C.R. Shelton, Machine learning, machine vision, and the brain, AI Magazine 20 (1999), 37–55.
  • David Pollard, Convergence of stochastic processes, Springer Series in Statistics, Springer-Verlag, New York, 1984. MR 762984, DOI 10.1007/978-1-4612-5254-2
  • RShS94 G.V. Rozenblum, M.A. Shubin, and M.Z. Solomyak, Partial differential equations vii: Spectral theory of differential operators, Encyclopaedia of Mathematical Sciences, vol. 64, Springer-Verlag, 1994. Schoenberg38 I.J. Schoenberg, Metric spaces and completely monotone functions, Ann. of Math. 39 (1938), 811–841.
  • Igor R. Shafarevich, Basic algebraic geometry. 1, 2nd ed., Springer-Verlag, Berlin, 1994. Varieties in projective space; Translated from the 1988 Russian edition and with notes by Miles Reid. MR 1328833
  • G. A. Miller, Groups which contain ten or eleven proper subgroups, Proc. Nat. Acad. Sci. U.S.A. 25 (1939), 540–543. MR 31, DOI 10.1073/pnas.25.10.540
  • Smale00 —, Mathematical problems for the next century, Mathematics: Frontiers and Perspectives (V. Arnold, M. Atiyah, P. Lax, and B. Mazur, eds.), AMS, 2000, pp. 271–294. SmaleZhou S. Smale and D.-X. Zhou, Estimating the approximation error in learning theory, Preprint, 2001.
  • Michael E. Taylor, Partial differential equations, Texts in Applied Mathematics, vol. 23, Springer-Verlag, New York, 1996. Basic theory. MR 1395147, DOI 10.1007/978-1-4684-9320-7
  • Valiant84 L.G. Valiant, A theory of the learnable, \CACM27 (1984), 1134–1142. vandeGeer S. van de Geer, Empirical processes in m-estimation, Cambridge University Press, 2000.
  • Vladimir N. Vapnik, Statistical learning theory, Adaptive and Learning Systems for Signal Processing, Communications, and Control, John Wiley & Sons, Inc., New York, 1998. A Wiley-Interscience Publication. MR 1641250
  • Patri P. Venuvinod, Intelligent production machines: benefiting from synergy amongst modelling, sensing and learning, Intelligent Production Machines: Myths and Realities, CRC Press LLC, 2000, pp. 215–252. Vitushkin59 A.G. Vitushkin, Estimation of the complexity of the tabulation problem, Nauka (in Russian), 1959, English Translation appeared as Theory of the Transmission and Processing of the Information, Pergamon Press, 1961.
  • Grace Wahba, Spline models for observational data, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990. MR 1045442, DOI 10.1137/1.9781611970128
  • WSSch98 R. Williamson, A. Smola, and B. Schölkopf, Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators, Tech. Report NC2-TR-1998-019, NeuroCOLT2, 1998.
Similar Articles
  • Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 68T05, 68P30
  • Retrieve articles in all journals with MSC (2000): 68T05, 68P30
Additional Information
  • Felipe Cucker
  • Affiliation: Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
  • Email:
  • Steve Smale
  • Affiliation: Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
  • Address at time of publication: Department of Mathematics, University of California, Berkeley, California 94720
  • Email:,
  • Received by editor(s): April 20, 2000
  • Received by editor(s) in revised form: June 1, 2001
  • Published electronically: October 5, 2001
  • Additional Notes: This work has been substantially funded by CERG grant No. 9040457 and City University grant No. 8780043.
  • © Copyright 2001 American Mathematical Society
  • Journal: Bull. Amer. Math. Soc. 39 (2002), 1-49
  • MSC (2000): Primary 68T05, 68P30
  • DOI:
  • MathSciNet review: 1864085