Selected new aspects of the calculus of variations in the large
HTML articles powered by AMS MathViewer
- by Ivar Ekeland and Nassif Ghoussoub PDF
- Bull. Amer. Math. Soc. 39 (2002), 207-265 Request permission
Abstract:
We discuss some of the recent developments in variational methods while emphasizing new applications to nonlinear problems. We touch on several issues: (i) the formulation of variational set-ups which provide more information on the location of critical points and therefore on the qualitative properties of the solutions of corresponding Euler-Lagrange equations; (ii) the relationships between the energy of variationally generated solutions, their Morse indices, and the Hausdorff measure of their nodal sets; (iii) the gluing of several topological obstructions; (iv) the preservation of critical levels after deformation of functionals; (v) and the various ways to recover compactness in certain borderline variational problems.References
- Antonio Ambrosetti and Paul H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349–381. MR 0370183, DOI 10.1016/0022-1236(73)90051-7
- Antonio Ambrosetti and Vittorio Coti Zelati, Periodic solutions of singular Lagrangian systems, Progress in Nonlinear Differential Equations and their Applications, vol. 10, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1267225, DOI 10.1007/978-1-4612-0319-3
- Thierry Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982. MR 681859, DOI 10.1007/978-1-4612-5734-9
- A. Bahri, Critical points at infinity in some variational problems, Pitman Research Notes in Mathematics Series, vol. 182, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 1019828
- Abbas Bahri and Henri Berestycki, A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc. 267 (1981), no. 1, 1–32. MR 621969, DOI 10.1090/S0002-9947-1981-0621969-9
- A. Bahri and J.-M. Coron, The scalar-curvature problem on the standard three-dimensional sphere, J. Funct. Anal. 95 (1991), no. 1, 106–172. MR 1087949, DOI 10.1016/0022-1236(91)90026-2
- A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), no. 3, 253–294. MR 929280, DOI 10.1002/cpa.3160410302
- A. Bahri and P.-L. Lions, Morse index of some min-max critical points. I. Application to multiplicity results, Comm. Pure Appl. Math. 41 (1988), no. 8, 1027–1037. MR 968487, DOI 10.1002/cpa.3160410803
- A. Bahri and P.-L. Lions, Solutions of superlinear elliptic equations and their Morse indices, Comm. Pure Appl. Math. 45 (1992), no. 9, 1205–1215. MR 1177482, DOI 10.1002/cpa.3160450908
- A. Bahri and P. H. Rabinowitz, Periodic solutions of Hamiltonian systems of $3$-body type, Ann. Inst. H. Poincaré C Anal. Non Linéaire 8 (1991), no. 6, 561–649. MR 1145561, DOI 10.1016/S0294-1449(16)30252-9
- Vieri Benci and Paul H. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math. 52 (1979), no. 3, 241–273. MR 537061, DOI 10.1007/BF01389883
- H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), no. 4, 313–345. MR 695535, DOI 10.1007/BF00250555
- Philippe Bolle, On the Bolza problem, J. Differential Equations 152 (1999), no. 2, 274–288. MR 1674537, DOI 10.1006/jdeq.1998.3484
- Phillipe Bolle, Nassif Ghoussoub, and Hossein Tehrani, The multiplicity of solutions in non-homogeneous boundary value problems, Manuscripta Math. 101 (2000), no. 3, 325–350. MR 1751037, DOI 10.1007/s002290050219
- Haïm Brézis and Louis Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437–477. MR 709644, DOI 10.1002/cpa.3160360405
- Haïm Brezis and Jean-Michel Coron, Multiple solutions of $H$-systems and Rellich’s conjecture, Comm. Pure Appl. Math. 37 (1984), no. 2, 149–187. MR 733715, DOI 10.1002/cpa.3160370202
- L. Caffarelli, R. Kohn, and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math. 53 (1984), no. 3, 259–275. MR 768824 [C-G]ChGh C. Chambers and N. Ghoussoub: Deformation from symmetry and multiplicity of solutions in non-homogeneous problems, Journal of Discrete and Continuous Dynamical Systems 8, No. 1 (2002), 267–281.
- Kung-ching Chang, Infinite-dimensional Morse theory and multiple solution problems, Progress in Nonlinear Differential Equations and their Applications, vol. 6, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1196690, DOI 10.1007/978-1-4612-0385-8
- Charles V. Coffman, Lyusternik-Schnirelman theory: complementary principles and the Morse index, Nonlinear Anal. 12 (1988), no. 5, 507–529. MR 940607, DOI 10.1016/0362-546X(88)90046-6
- Charles V. Coffman, A nonlinear boundary value problem with many positive solutions, J. Differential Equations 54 (1984), no. 3, 429–437. MR 760381, DOI 10.1016/0022-0396(84)90153-0
- Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 511133, DOI 10.1090/cbms/038
- Jean-Noël Corvellec, Marco Degiovanni, and Marco Marzocchi, Deformation properties for continuous functionals and critical point theory, Topol. Methods Nonlinear Anal. 1 (1993), no. 1, 151–171. MR 1215263, DOI 10.12775/TMNA.1993.012
- Vittorio Coti Zelati, Ivar Ekeland, and Pierre-Louis Lions, Index estimates and critical points of functionals not satisfying Palais-Smale, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), no. 4, 569–581. MR 1093709
- Vittorio Coti Zelati and Paul H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc. 4 (1991), no. 4, 693–727. MR 1119200, DOI 10.1090/S0894-0347-1991-1119200-3
- Vittorio Coti Zelati and Paul H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $\textbf {R}^n$, Comm. Pure Appl. Math. 45 (1992), no. 10, 1217–1269. MR 1181725, DOI 10.1002/cpa.3160451002
- Weiyue Ding, Jürgen Jost, Jiayu Li, and Guofang Wang, Existence results for mean field equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 16 (1999), no. 5, 653–666 (English, with English and French summaries). MR 1712560, DOI 10.1016/S0294-1449(99)80031-6
- Harold Donnelly and Charles Fefferman, Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math. 93 (1988), no. 1, 161–183. MR 943927, DOI 10.1007/BF01393691
- Henrik Egnell, Positive solutions of semilinear equations in cones, Trans. Amer. Math. Soc. 330 (1992), no. 1, 191–201. MR 1034662, DOI 10.1090/S0002-9947-1992-1034662-5
- Ivar Ekeland, Une théorie de Morse pour les systèmes hamiltoniens convexes, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 1, 19–78 (French, with English summary). MR 738494, DOI 10.1016/S0294-1449(16)30430-9 [E1]Ek1 I. Ekeland: Nonconvex minimization problems, Bull. AMS 1 (1979), 443–474.
- Ivar Ekeland, Convexity methods in Hamiltonian mechanics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 19, Springer-Verlag, Berlin, 1990. MR 1051888, DOI 10.1007/978-3-642-74331-3
- I. Ekeland and H. Hofer, Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems, Invent. Math. 81 (1985), no. 1, 155–188. MR 796195, DOI 10.1007/BF01388776
- I. Ekeland and H. Hofer, Convex Hamiltonian energy surfaces and their periodic trajectories, Comm. Math. Phys. 113 (1987), no. 3, 419–469. MR 925924, DOI 10.1007/BF01221255
- John W. Green, Harmonic functions in domains with multiple boundary points, Amer. J. Math. 61 (1939), 609–632. MR 90, DOI 10.2307/2371316
- Ivar Ekeland and Jean-Michel Lasry, On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. of Math. (2) 112 (1980), no. 2, 283–319. MR 592293, DOI 10.2307/1971148
- Maria J. Esteban and Eric Séré, Solutions of the Dirac-Fock equations for atoms and molecules, Comm. Math. Phys. 203 (1999), no. 3, 499–530. MR 1700174, DOI 10.1007/s002200050032
- E. R. Fadell, S. Y. Husseini, and P. H. Rabinowitz, Borsuk-Ulam theorems for arbitrary $S^{1}$ actions and applications, Trans. Amer. Math. Soc. 274 (1982), no. 1, 345–360. MR 670937, DOI 10.1090/S0002-9947-1982-0670937-0
- G. Fang, On the existence and the classification of critical points for non-smooth functionals, Canad. J. Math. 47 (1995), no. 4, 684–717. MR 1346159, DOI 10.4153/CJM-1995-036-9
- G. Fang and N. Ghoussoub, Morse-type information on Palais-Smale sequences obtained by min-max principles, Comm. Pure Appl. Math. 47 (1994), no. 12, 1595–1653. MR 1303222, DOI 10.1002/cpa.3160471204
- Andreas Floer, Witten’s complex and infinite-dimensional Morse theory, J. Differential Geom. 30 (1989), no. 1, 207–221. MR 1001276
- N. Ghoussoub, Location, multiplicity and Morse indices of min-max critical points, J. Reine Angew. Math. 417 (1991), 27–76. MR 1103905, DOI 10.1515/crll.1991.417.27
- Nassif Ghoussoub, Duality and perturbation methods in critical point theory, Cambridge Tracts in Mathematics, vol. 107, Cambridge University Press, Cambridge, 1993. With appendices by David Robinson. MR 1251958, DOI 10.1017/CBO9780511551703 [G3]Gh3 N. Ghoussoub: Morse theory up to epsilon, Preprint (2000). [G-K]GhKa N. Ghoussoub, X. Kang: Semilinear equations with Hardy-Sobolev singularities on the boundary, Preprint (2001).
- N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré C Anal. Non Linéaire 6 (1989), no. 5, 321–330 (English, with French summary). MR 1030853, DOI 10.1016/S0294-1449(16)30313-4
- N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc. 352 (2000), no. 12, 5703–5743. MR 1695021, DOI 10.1090/S0002-9947-00-02560-5
- B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\textbf {R}^{n}$, Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York-London, 1981, pp. 369–402. MR 634248
- Changfeng Gui and Nassif Ghoussoub, Multi-peak solutions for a semilinear Neumann problem involving the critical Sobolev exponent, Math. Z. 229 (1998), no. 3, 443–474. MR 1658569, DOI 10.1007/PL00004663
- Changfeng Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Comm. Partial Differential Equations 21 (1996), no. 5-6, 787–820. MR 1391524, DOI 10.1080/03605309608821208
- Changfeng Gui, Multipeak solutions for a semilinear Neumann problem, Duke Math. J. 84 (1996), no. 3, 739–769. MR 1408543, DOI 10.1215/S0012-7094-96-08423-9
- Robert Hardt and Leon Simon, Nodal sets for solutions of elliptic equations, J. Differential Geom. 30 (1989), no. 2, 505–522. MR 1010169
- Helmut Hofer, A geometric description of the neighbourhood of a critical point given by the mountain-pass theorem, J. London Math. Soc. (2) 31 (1985), no. 3, 566–570. MR 812787, DOI 10.1112/jlms/s2-31.3.566
- Helmut Hofer, Clifford H. Taubes, Alan Weinstein, and Eduard Zehnder (eds.), The Floer memorial volume, Progress in Mathematics, vol. 133, Birkhäuser Verlag, Basel, 1995. MR 1362819, DOI 10.1007/978-3-0348-9217-9
- Louis Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\textbf {R}^N$, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), no. 4, 787–809. MR 1718530, DOI 10.1017/S0308210500013147
- David Jerison and Carlos E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math. (2) 121 (1985), no. 3, 463–494. With an appendix by E. M. Stein. MR 794370, DOI 10.2307/1971205
- A. C. Lazer and S. Solimini, Nontrivial solutions of operator equations and Morse indices of critical points of min-max type, Nonlinear Anal. 12 (1988), no. 8, 761–775. MR 954951, DOI 10.1016/0362-546X(88)90037-5
- Elliott H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2) 118 (1983), no. 2, 349–374. MR 717827, DOI 10.2307/2007032
- Radu Bǎdescu, On a problem of Goursat, Gaz. Mat. 44 (1939), 571–577. MR 0000087
- P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys. 109 (1987), no. 1, 33–97. MR 879032, DOI 10.1007/BF01205672 [L-L-Z]LiLoZ C-G. Liu, Y. Long, C. Zhu: Multiplicity of closed characteristics on symmetric convex hypersurfaces in $\mathbf {R}^{2n}$, Nankai Inst. Math., Preprint (1999). [L-Sc]LS L. Ljusternik, L. Schnirelmann: Méthodes topologiques dans les problèmes variationels. Hermann, Paris (1934).
- Yiming Long, Bott formula of the Maslov-type index theory, Pacific J. Math. 187 (1999), no. 1, 113–149. MR 1674313, DOI 10.2140/pjm.1999.187.113
- Yiming Long, Precise iteration formulae of the Maslov-type index theory and ellipticity of closed characteristics, Adv. Math. 154 (2000), no. 1, 76–131. MR 1780096, DOI 10.1006/aima.2000.1914 [L-Z]LoZ Y. Long, C. Zhu: Closed characteristics on compact convex hypersurfaces in $\mathbf {R}^{2n}$, Nankai Inst. Math., Preprint (1999).
- Jean Mawhin and Michel Willem, Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, vol. 74, Springer-Verlag, New York, 1989. MR 982267, DOI 10.1007/978-1-4757-2061-7
- Wei-Ming Ni and Izumi Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), no. 2, 247–281. MR 1219814, DOI 10.1215/S0012-7094-93-07004-4
- L. Nirenberg, Variational methods in nonlinear problems, Topics in calculus of variations (Montecatini Terme, 1987) Lecture Notes in Math., vol. 1365, Springer, Berlin, 1989, pp. 100–119. MR 994020, DOI 10.1007/BFb0089179
- S. I. Pohožaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Dokl. Akad. Nauk SSSR 165 (1965), 36–39 (Russian). MR 0192184
- Patrizia Pucci and James Serrin, The structure of the critical set in the mountain pass theorem, Trans. Amer. Math. Soc. 299 (1987), no. 1, 115–132. MR 869402, DOI 10.1090/S0002-9947-1987-0869402-1
- Paul H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR 845785, DOI 10.1090/cbms/065
- Paul H. Rabinowitz, Multibump solutions of differential equations: an overview, Chinese J. Math. 24 (1996), no. 1, 1–36. MR 1399183
- Paul H. Rabinowitz, Periodic solutions of a Hamiltonian system on a prescribed energy surface, J. Differential Equations 33 (1979), no. 3, 336–352. MR 543703, DOI 10.1016/0022-0396(79)90069-X
- Paul H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), no. 2, 157–184. MR 467823, DOI 10.1002/cpa.3160310203
- J. Sacks and K. Uhlenbeck, The existence of minimal immersions of $2$-spheres, Ann. of Math. (2) 113 (1981), no. 1, 1–24. MR 604040, DOI 10.2307/1971131
- Éric Séré, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z. 209 (1992), no. 1, 27–42. MR 1143210, DOI 10.1007/BF02570817
- Sergio Solimini, Morse index estimates in min-max theorems, Manuscripta Math. 63 (1989), no. 4, 421–453. MR 991264, DOI 10.1007/BF01171757
- Michael Struwe, Variational methods, Springer-Verlag, Berlin, 1990. Applications to nonlinear partial differential equations and Hamiltonian systems. MR 1078018, DOI 10.1007/978-3-662-02624-3
- Michael Struwe, The existence of surfaces of constant mean curvature with free boundaries, Acta Math. 160 (1988), no. 1-2, 19–64. MR 926524, DOI 10.1007/BF02392272
- Michael Struwe and Gabriella Tarantello, On multivortex solutions in Chern-Simons gauge theory, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), no. 1, 109–121 (English, with Italian summary). MR 1619043
- Takashi Suzuki, Positive solutions for semilinear elliptic equations on expanding annuli: mountain pass approach, Funkcial. Ekvac. 39 (1996), no. 1, 143–164. MR 1401657
- Kazunaga Tanaka, Morse indices at critical points related to the symmetric mountain pass theorem and applications, Comm. Partial Differential Equations 14 (1989), no. 1, 99–128. MR 973271, DOI 10.1080/03605308908820592
- Kazunaga Tanaka, Periodic solutions for singular Hamiltonian systems and closed geodesics on non-compact Riemannian manifolds, Ann. Inst. H. Poincaré C Anal. Non Linéaire 17 (2000), no. 1, 1–33 (English, with English and French summaries). MR 1743429, DOI 10.1016/S0294-1449(99)00102-X
- Gabriella Tarantello, Nodal solutions of semilinear elliptic equations with critical exponent, Differential Integral Equations 5 (1992), no. 1, 25–42. MR 1141725
- Clifford Henry Taubes, Path-connected Yang-Mills moduli spaces, J. Differential Geom. 19 (1984), no. 2, 337–392. MR 755230
- Clifford Henry Taubes, Min-max theory for the Yang-Mills-Higgs equations, Comm. Math. Phys. 97 (1985), no. 4, 473–540. MR 787116, DOI 10.1007/BF01221215
- Clifford Henry Taubes, A framework for Morse theory for the Yang-Mills functional, Invent. Math. 94 (1988), no. 2, 327–402. MR 958836, DOI 10.1007/BF01394329
- Claude Viterbo, Indice de Morse des points critiques obtenus par minimax, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), no. 3, 221–225 (French, with English summary). MR 954472, DOI 10.1016/S0294-1449(16)30345-6
- Xue-Feng Yang, Nodal sets and Morse indices of solutions of super-linear elliptic PDEs, J. Funct. Anal. 160 (1998), no. 1, 223–253. MR 1658692, DOI 10.1006/jfan.1998.3301
Additional Information
- Ivar Ekeland
- Affiliation: CEREMADE, Université Paris-Dauphine, Paris, France
- MR Author ID: 62405
- Email: Ivar.Ekeland@dauphine.fr
- Nassif Ghoussoub
- Affiliation: Pacific Institute for the Mathematical Sciences, University of British Columbia, Vancouver, B.C., Canada V6T 1Z2
- MR Author ID: 73130
- Email: nassif@math.ubc.ca
- Received by editor(s): January 20, 2001
- Received by editor(s) in revised form: June 13, 2001
- Published electronically: January 4, 2002
- Additional Notes: The second author was partially supported by a grant from the Natural Science and Engineering Research Council of Canada (NSERC)
- © Copyright 2002 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 39 (2002), 207-265
- MSC (2000): Primary 35J60, 47J30, 58E05; Secondary 57R17
- DOI: https://doi.org/10.1090/S0273-0979-02-00929-1
- MathSciNet review: 1886088