The Brunn-Minkowski inequality
HTML articles powered by AMS MathViewer
- by R. J. Gardner PDF
- Bull. Amer. Math. Soc. 39 (2002), 355-405 Request permission
Abstract:
In 1978, Osserman [124] wrote an extensive survey on the isoperimetric inequality. The Brunn-Minkowski inequality can be proved in a page, yet quickly yields the classical isoperimetric inequality for important classes of subsets of ${\mathbb R}^n$, and deserves to be better known. This guide explains the relationship between the Brunn-Minkowski inequality and other inequalities in geometry and analysis, and some applications.References
- S. Alesker, S. Dar, and V. Milman, A remarkable measure preserving diffeomorphism between two convex bodies in $\textbf {R}^n$, Geom. Dedicata 74 (1999), no. 2, 201–212. MR 1674116, DOI 10.1023/A:1005087216335
- Albert Eagle, Series for all the roots of the equation $(z-a)^m=k(z-b)^n$, Amer. Math. Monthly 46 (1939), 425–428. MR 6, DOI 10.2307/2303037
- Ben Andrews, Gauss curvature flow: the fate of the rolling stones, Invent. Math. 138 (1999), no. 1, 151–161. MR 1714339, DOI 10.1007/s002220050344
- Juan Arias-de-Reyna, Keith Ball, and Rafael Villa, Concentration of the distance in finite-dimensional normed spaces, Mathematika 45 (1998), no. 2, 245–252. MR 1695717, DOI 10.1112/S0025579300014182
- Hyoungsick Bahn and Paul Ehrlich, A Brunn-Minkowski type theorem on the Minkowski spacetime, Canad. J. Math. 51 (1999), no. 3, 449–469. MR 1701320, DOI 10.4153/CJM-1999-020-0 Bai71 R. Baierlein, Atoms and Information Theory, W. H. Freeman and Company, San Francisco, 1971.
- Ilya J. Bakelman, Convex analysis and nonlinear geometric elliptic equations, Springer-Verlag, Berlin, 1994. With an obituary for the author by William Rundell; Edited by Steven D. Taliaferro. MR 1305147, DOI 10.1007/978-3-642-69881-1
- Keith Ball, Logarithmically concave functions and sections of convex sets in $\textbf {R}^n$, Studia Math. 88 (1988), no. 1, 69–84. MR 932007, DOI 10.4064/sm-88-1-69-84
- Keith Ball, Volumes of sections of cubes and related problems, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 251–260. MR 1008726, DOI 10.1007/BFb0090058
- Keith Ball, Shadows of convex bodies, Trans. Amer. Math. Soc. 327 (1991), no. 2, 891–901. MR 1035998, DOI 10.1090/S0002-9947-1991-1035998-3
- Keith Ball, Volume ratios and a reverse isoperimetric inequality, J. London Math. Soc. (2) 44 (1991), no. 2, 351–359. MR 1136445, DOI 10.1112/jlms/s2-44.2.351
- Keith Ball, An elementary introduction to modern convex geometry, Flavors of geometry, Math. Sci. Res. Inst. Publ., vol. 31, Cambridge Univ. Press, Cambridge, 1997, pp. 1–58. MR 1491097, DOI 10.2977/prims/1195164788
- Franck Barthe, Inégalités de Brascamp-Lieb et convexité, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 8, 885–888 (French, with English and French summaries). MR 1450443, DOI 10.1016/S0764-4442(97)86963-7 Bar97b —, Inégalités Fonctionelles et Géométriques Obtenues par Transport des Mesures, Ph.D. thesis, Université de Marne-la-Vallée, Paris, 1997.
- A. Volčič, Generalized Hammer’s X-ray problem, Atti Sem. Mat. Fis. Univ. Modena 46 (1998), no. suppl., 393–400. Dedicated to Prof. C. Vinti (Italian) (Perugia, 1996). MR 1645730
- Franck Barthe, On a reverse form of the Brascamp-Lieb inequality, Invent. Math. 134 (1998), no. 2, 335–361. MR 1650312, DOI 10.1007/s002220050267
- F. Barthe, Optimal Young’s inequality and its converse: a simple proof, Geom. Funct. Anal. 8 (1998), no. 2, 234–242. MR 1616143, DOI 10.1007/s000390050054
- Franck Barthe, Restricted Prékopa-Leindler inequality, Pacific J. Math. 189 (1999), no. 2, 211–222. MR 1696120, DOI 10.2140/pjm.1999.189.211
- Edwin F. Beckenbach and Richard Bellman, Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 30, Springer-Verlag, Inc., New York, 1965. Second revised printing. MR 0192009
- William Beckner, Inequalities in Fourier analysis, Ann. of Math. (2) 102 (1975), no. 1, 159–182. MR 385456, DOI 10.2307/1970980 Beh38 F. Behrend, Über die kleinste umbeschriebene und die grösste einbeschriebene Ellipse eines konvexen Bereichs, Math. Ann. 115 (1938), 379–411. Bia01 G. Bianchi, Determining convex bodies with piecewise ${C}^2$ boundary from their covariogram, preprint.
- Nelson M. Blachman, The convolution inequality for entropy powers, IEEE Trans. Inform. Theory IT-11 (1965), 267–271. MR 188004, DOI 10.1109/tit.1965.1053768 BobL01 S. G. Bobkov and M. Ledoux, From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal. 10 (2000), 1028–1052.
- Béla Bollobás and Imre Leader, Sums in the grid, Discrete Math. 162 (1996), no. 1-3, 31–48. MR 1425777, DOI 10.1016/S0012-365X(96)00303-2
- Christer Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math. 30 (1975), no. 2, 207–216. MR 399402, DOI 10.1007/BF01425510
- C. Borell, Convex set functions in $d$-space, Period. Math. Hungar. 6 (1975), no. 2, 111–136. MR 404559, DOI 10.1007/BF02018814
- Christer Borell, Capacitary inequalities of the Brunn-Minkowski type, Math. Ann. 263 (1983), no. 2, 179–184. MR 698001, DOI 10.1007/BF01456879
- Christer Borell, Geometric properties of some familiar diffusions in $\textbf {R}^n$, Ann. Probab. 21 (1993), no. 1, 482–489. MR 1207234
- Christer Borell, Geometric inequalities in option pricing, Convex geometric analysis (Berkeley, CA, 1996) Math. Sci. Res. Inst. Publ., vol. 34, Cambridge Univ. Press, Cambridge, 1999, pp. 29–51. MR 1665575, DOI 10.1016/S0014-2921(98)00017-8
- Christer Borell, Diffusion equations and geometric inequalities, Potential Anal. 12 (2000), no. 1, 49–71. MR 1745333, DOI 10.1023/A:1008641618547 BraL75 H. J. Brascamp and E. H. Lieb, Some inequalities for Gaussian measures and the long-range order of one-dimensional plasma, Functional Integration and Its Applications, ed. by A. M. Arthurs, Clarendon Press, Oxford, 1975, pp. 1–14.
- Herm Jan Brascamp and Elliott H. Lieb, Best constants in Young’s inequality, its converse, and its generalization to more than three functions, Advances in Math. 20 (1976), no. 2, 151–173. MR 412366, DOI 10.1016/0001-8708(76)90184-5
- Herm Jan Brascamp and Elliott H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Functional Analysis 22 (1976), no. 4, 366–389. MR 0450480, DOI 10.1016/0022-1236(76)90004-5
- V. V. Buldygin and A. B. Kharazishvili, Geometric aspects of probability theory and mathematical statistics, Mathematics and its Applications, vol. 514, Kluwer Academic Publishers, Dordrecht, 2000. Translated from the 1985 Russian original, The Brunn-Minkowski inequality and its applications [“Naukova Dumka”, Kiev, 1985; MR0889670 (89b:52019)], by Kharazishvili and revised by the authors. MR 1784349, DOI 10.1007/978-94-017-1687-1
- S. Minakshi Sundaram, On non-linear partial differential equations of the hyperbolic type, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 495–503. MR 0000089
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Luis A. Caffarelli, David Jerison, and Elliott H. Lieb, On the case of equality in the Brunn-Minkowski inequality for capacity, Adv. Math. 117 (1996), no. 2, 193–207. MR 1371649, DOI 10.1006/aima.1996.0008 Cor01 D. Cordero-Erausquin, Some applications of mass transport to Gaussian type inequalities, Arch. Rational Mech. Anal., to appear.
- Dario Cordero-Erausquin, Inégalité de Prékopa-Leindler sur la sphère, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), no. 9, 789–792 (French, with English and French summaries). MR 1724541, DOI 10.1016/S0764-4442(99)90008-3 CMS00 D. Cordero-Erausquin, R. J. McCann, and M. Schmuckenschläger, A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math. 146 (2001), 219–257.
- Max H. M. Costa and Thomas M. Cover, On the similarity of the entropy power inequality and the Brunn-Minkowski inequality, IEEE Trans. Inform. Theory 30 (1984), no. 6, 837–839. MR 782217, DOI 10.1109/TIT.1984.1056983
- S. Dancs and B. Uhrin, On a class of integral inequalities and their measure-theoretic consequences, J. Math. Anal. Appl. 74 (1980), no. 2, 388–400. MR 572660, DOI 10.1016/0022-247X(80)90136-5
- I. Dancs and B. Uhrin, On the conditions of equality in an integral inequality, Publ. Math. Debrecen 29 (1982), no. 1-2, 117–132. MR 673145
- S. Dar, A Brunn-Minkowski-type inequality, Geom. Dedicata 77 (1999), no. 1, 1–9. MR 1706512, DOI 10.1023/A:1005132006433
- Somesh Das Gupta, Brunn-Minkowski inequality and its aftermath, J. Multivariate Anal. 10 (1980), no. 3, 296–318. MR 588074, DOI 10.1016/0047-259X(80)90051-2
- Amir Dembo, Thomas M. Cover, and Joy A. Thomas, Information-theoretic inequalities, IEEE Trans. Inform. Theory 37 (1991), no. 6, 1501–1518. MR 1134291, DOI 10.1109/18.104312
- Sudhakar Dharmadhikari and Kumar Joag-Dev, Unimodality, convexity, and applications, Probability and Mathematical Statistics, Academic Press, Inc., Boston, MA, 1988. MR 954608
- Alexander Dinghas, Über eine Klasse superadditiver Mengenfunktionale von Brunn-Minkowski-Lusternikschem Typus, Math. Z. 68 (1957), 111–125 (German). MR 96173, DOI 10.1007/BF01160335
- Richard M. Dudley, Real analysis and probability, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1989. MR 982264
- R. M. Dudley, Metric marginal problems for set-valued or non-measurable variables, Probab. Theory Related Fields 100 (1994), no. 2, 175–189. MR 1296427, DOI 10.1007/BF01199264
- H. G. Eggleston, Convexity, Cambridge Tracts in Mathematics and Mathematical Physics, No. 47, Cambridge University Press, New York, 1958. MR 0124813
- Antoine Ehrhard, Symétrisation dans l’espace de Gauss, Math. Scand. 53 (1983), no. 2, 281–301 (French). MR 745081, DOI 10.7146/math.scand.a-12035
- Antoine Ehrhard, Éléments extrémaux pour les inégalités de Brunn-Minkowski gaussiennes, Ann. Inst. H. Poincaré Probab. Statist. 22 (1986), no. 2, 149–168 (French, with English summary). MR 850753
- Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- William J. Firey, Polar means of convex bodies and a dual to the Brunn-Minkowski theorem, Canadian J. Math. 13 (1961), 444–453. MR 177350, DOI 10.4153/CJM-1961-037-0
- Wm. J. Firey, $p$-means of convex bodies, Math. Scand. 10 (1962), 17–24. MR 141003, DOI 10.7146/math.scand.a-10510
- William J. Firey, Shapes of worn stones, Mathematika 21 (1974), 1–11. MR 362045, DOI 10.1112/S0025579300005714
- Irene Fonseca, The Wulff theorem revisited, Proc. Roy. Soc. London Ser. A 432 (1991), no. 1884, 125–145. MR 1116536, DOI 10.1098/rspa.1991.0009
- Irene Fonseca and Stefan Müller, A uniqueness proof for the Wulff theorem, Proc. Roy. Soc. Edinburgh Sect. A 119 (1991), no. 1-2, 125–136. MR 1130601, DOI 10.1017/S0308210500028365
- B. Roy Frieden, Physics from Fisher information, Cambridge University Press, Cambridge, 1998. A unification. MR 1676801, DOI 10.1017/CBO9780511622670 Gar01 R. J. Gardner, The Brunn-Minkowski inequality: A survey with proofs, available at http://www.ac.wwu.edu/~gardner.
- R. J. Gardner, Intersection bodies and the Busemann-Petty problem, Trans. Amer. Math. Soc. 342 (1994), no. 1, 435–445. MR 1201126, DOI 10.1090/S0002-9947-1994-1201126-7
- R. J. Gardner, A positive answer to the Busemann-Petty problem in three dimensions, Ann. of Math. (2) 140 (1994), no. 2, 435–447. MR 1298719, DOI 10.2307/2118606
- Richard J. Gardner, Geometric tomography, Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, Cambridge, 1995. MR 1356221 GarG99 R. J. Gardner and P. Gronchi, A Brunn-Minkowski inequality for the integer lattice, Trans. Amer. Math. Soc. 353 (2001), 3995–4024.
- R. J. Gardner, A. Koldobsky, and T. Schlumprecht, An analytic solution to the Busemann-Petty problem on sections of convex bodies, Ann. of Math. (2) 149 (1999), no. 2, 691–703. MR 1689343, DOI 10.2307/120978
- R. J. Gardner and Gaoyong Zhang, Affine inequalities and radial mean bodies, Amer. J. Math. 120 (1998), no. 3, 505–528. MR 1623396
- H. Groemer, Stability of geometric inequalities, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 125–150. MR 1242978
- M. Gromov, Convex sets and Kähler manifolds, Advances in differential geometry and topology, World Sci. Publ., Teaneck, NJ, 1990, pp. 1–38. MR 1095529
- Leonard Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), no. 4, 1061–1083. MR 420249, DOI 10.2307/2373688 GLYZ00 O.-G. Guleryuz, E. Lutwak, D. Yang, and G. Zhang, Information theoretic inequalities for contoured probability distributions, preprint.
- H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957 (German). MR 0102775
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1 HLP59 G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1959.
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- David Jerison, A Minkowski problem for electrostatic capacity, Acta Math. 176 (1996), no. 1, 1–47. MR 1395668, DOI 10.1007/BF02547334
- Jeff Kahn and Nathan Linial, Balancing extensions via Brunn-Minkowski, Combinatorica 11 (1991), no. 4, 363–368. MR 1137768, DOI 10.1007/BF01275670
- R. Kannan, L. Lovász, and M. Simonovits, Isoperimetric problems for convex bodies and a localization lemma, Discrete Comput. Geom. 13 (1995), no. 3-4, 541–559. MR 1318794, DOI 10.1007/BF02574061 King S. P. King, website at http://members.home.net/stephenk1/Outlaw/fisherinfo.html.
- J. F. C. Kingman and S. J. Taylor, Introduction to measure and probability, Cambridge University Press, London-New York-Ibadan, 1966. MR 0218515
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- RafałLatała, A note on the Ehrhard inequality, Studia Math. 118 (1996), no. 2, 169–174. MR 1389763, DOI 10.4064/sm-118-2-169-174 Led99 M. Ledoux, Concentration of measure and logarithmic Sobolev inequalities, Séminaire de Probabilités, ed. by J. Azéma, M. Émery, M. Ledoux, and M. Yor, Lecture Notes in Mathematics 1709, Springer, Berlin, 1999, pp. 120–216. Led01 —, The Concentration of Measure Phenomenon, American Mathematical Society, Providence, RI, 2001.
- Michel Ledoux and Michel Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23, Springer-Verlag, Berlin, 1991. Isoperimetry and processes. MR 1102015, DOI 10.1007/978-3-642-20212-4 Lei72 L. Leindler, On a certain converse of Hölder’s inequality. II, Acta Sci. Math. (Szeged) 33 (1972), 217–223.
- Elliott H. Lieb, Proof of an entropy conjecture of Wehrl, Comm. Math. Phys. 62 (1978), no. 1, 35–41. MR 506364
- Elliott H. Lieb, Gaussian kernels have only Gaussian maximizers, Invent. Math. 102 (1990), no. 1, 179–208. MR 1069246, DOI 10.1007/BF01233426
- Elliott H. Lieb and Michael Loss, Analysis, 2nd ed., Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001. MR 1817225, DOI 10.1090/gsm/014
- J. Lindenstrauss and V. D. Milman, The local theory of normed spaces and its applications to convexity, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 1149–1220. MR 1243006
- L. Lovász and M. Simonovits, Random walks in a convex body and an improved volume algorithm, Random Structures Algorithms 4 (1993), no. 4, 359–412. MR 1238906, DOI 10.1002/rsa.3240040402 Lus35 L. A. Lusternik, Die Brunn-Minkowskische Ungleichung für beliebige messbare Mengen, C. R. (Doklady) Acad. Sci. URSS 8 (1935), 55–58.
- Erwin Lutwak, Dual mixed volumes, Pacific J. Math. 58 (1975), no. 2, 531–538. MR 380631
- Erwin Lutwak, Width-integrals of convex bodies, Proc. Amer. Math. Soc. 53 (1975), no. 2, 435–439. MR 383254, DOI 10.1090/S0002-9939-1975-0383254-5
- Erwin Lutwak, A general isepiphanic inequality, Proc. Amer. Math. Soc. 90 (1984), no. 3, 415–421. MR 728360, DOI 10.1090/S0002-9939-1984-0728360-3
- Erwin Lutwak, Volume of mixed bodies, Trans. Amer. Math. Soc. 294 (1986), no. 2, 487–500. MR 825717, DOI 10.1090/S0002-9947-1986-0825717-3
- Erwin Lutwak, Intersection bodies and dual mixed volumes, Adv. in Math. 71 (1988), no. 2, 232–261. MR 963487, DOI 10.1016/0001-8708(88)90077-1
- Erwin Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math. Soc. (3) 60 (1990), no. 2, 365–391. MR 1031458, DOI 10.1112/plms/s3-60.2.365
- Erwin Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), no. 1, 131–150. MR 1231704
- Paola De Vito, On a class of linear spaces with mutually intersecting long lines, Ricerche Mat. 40 (1991), no. 1, 27–32 (Italian, with English summary). MR 1191884
- Erwin Lutwak, Selected affine isoperimetric inequalities, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 151–176. MR 1242979, DOI 10.1016/B978-0-444-89596-7.50010-9
- Erwin Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math. 118 (1996), no. 2, 244–294. MR 1378681, DOI 10.1006/aima.1996.0022 LYZ01 E. Lutwak, D. Yang, and G. Zhang, The Brunn-Minkowski-Firey inequality for non-convex sets, preprint. LYZ00c —, The Cramer-Rao inequality for star bodies, Duke Math. J. 112 (2002), 59–81. LYZ00b —, On the ${L}_p$-Minkowski problem, preprint. LYZ01b —, Sharp affine ${L}_p$ Sobolev inequalities, preprint.
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, A new ellipsoid associated with convex bodies, Duke Math. J. 104 (2000), no. 3, 375–390. MR 1781476, DOI 10.1215/S0012-7094-00-10432-2 LYZ001 —, ${L}_p$ affine isoperimetric inequalities, J. Diff. Geom. 56 (2000), 111–132.
- Erwin Lutwak and Gaoyong Zhang, Blaschke-Santaló inequalities, J. Differential Geom. 47 (1997), no. 1, 1–16. MR 1601426
- Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890, DOI 10.1017/CBO9780511623813
- B. Maurey, Some deviation inequalities, Geom. Funct. Anal. 1 (1991), no. 2, 188–197. MR 1097258, DOI 10.1007/BF01896377 McC94 R. J. McCann, A Convexity Theory for Interacting Gases and Equilibrium Crystals, Ph.D. dissertation, Princeton University, 1994.
- Robert J. McCann, A convexity principle for interacting gases, Adv. Math. 128 (1997), no. 1, 153–179. MR 1451422, DOI 10.1006/aima.1997.1634
- Robert J. McCann, Equilibrium shapes for planar crystals in an external field, Comm. Math. Phys. 195 (1998), no. 3, 699–723. MR 1641031, DOI 10.1007/s002200050409
- Peter McMullen, New combinations of convex sets, Geom. Dedicata 78 (1999), no. 1, 1–19. MR 1722167, DOI 10.1023/A:1005019802841 MecS01 J. Mecke and A. Schwella, Inequalities in the sense of Brunn-Minkowski, Vitale for random convex bodies, preprint.
- Mathieu Meyer, Maximal hyperplane sections of convex bodies, Mathematika 46 (1999), no. 1, 131–136. MR 1750649, DOI 10.1112/S0025579300007622
- V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed $n$-dimensional space, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 64–104. MR 1008717, DOI 10.1007/BFb0090049
- Vitali D. Milman and Gideon Schechtman, Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Mathematics, vol. 1200, Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov. MR 856576
- Melvyn B. Nathanson, Additive number theory, Graduate Texts in Mathematics, vol. 165, Springer-Verlag, New York, 1996. Inverse problems and the geometry of sumsets. MR 1477155, DOI 10.1007/978-1-4757-3845-2
- Andrei Okounkov, Brunn-Minkowski inequality for multiplicities, Invent. Math. 125 (1996), no. 3, 405–411. MR 1400312, DOI 10.1007/s002220050081
- Robert Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1182–1238. MR 500557, DOI 10.1090/S0002-9904-1978-14553-4 Ott01 F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations 26 (2001), 101–174.
- F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal. 173 (2000), no. 2, 361–400. MR 1760620, DOI 10.1006/jfan.1999.3557
- Gilles Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics, vol. 94, Cambridge University Press, Cambridge, 1989. MR 1036275, DOI 10.1017/CBO9780511662454
- András Prékopa, Logarithmic concave measures with application to stochastic programming, Acta Sci. Math. (Szeged) 32 (1971), 301–316. MR 315079
- András Prékopa, On logarithmic concave measures and functions, Acta Sci. Math. (Szeged) 34 (1973), 335–343. MR 404557
- András Prékopa, Stochastic programming, Mathematics and its Applications, vol. 324, Kluwer Academic Publishers Group, Dordrecht, 1995. MR 1375234, DOI 10.1007/978-94-017-3087-7
- Yosef Rinott, On convexity of measures, Ann. Probability 4 (1976), no. 6, 1020–1026. MR 428540, DOI 10.1214/aop/1176995947
- Imre Z. Ruzsa, The Brunn-Minkowski inequality and nonconvex sets, Geom. Dedicata 67 (1997), no. 3, 337–348. MR 1475877, DOI 10.1023/A:1004958110076
- Michel Schmitt, On two inverse problems in mathematical morphology, Mathematical morphology in image processing, Opt. Engrg., vol. 34, Dekker, New York, 1993, pp. 151–169. MR 1196706
- Michael Schmuckenschläger, An extremal property of the regular simplex, Convex geometric analysis (Berkeley, CA, 1996) Math. Sci. Res. Inst. Publ., vol. 34, Cambridge Univ. Press, Cambridge, 1999, pp. 199–202. MR 1665592
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521, DOI 10.1017/CBO9780511526282
- J. Serra, Image analysis and mathematical morphology, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1984. English version revised by Noel Cressie. MR 753649
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336 Sie20 W. Sierpiński, Sur la question de la mesurabilité de la base de M. Hamel, Fund. Math. 1 (1920), 105–111.
- A. J. Stam, Some inequalities satisfied by the quantities of information of Fisher and Shannon, Information and Control 2 (1959), 101–112. MR 109101 Sta01 A. Stancu, The discrete planar $L_0$-Minkowski problem, Adv. Math., to appear.
- D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic geometry and its applications, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley & Sons, Ltd., Chichester, 1987. With a foreword by D. G. Kendall. MR 895588
- V. N. Sudakov and B. S. Cirel′son, Extremal properties of half-spaces for spherically invariant measures, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 41 (1974), 14–24, 165 (Russian). Problems in the theory of probability distributions, II. MR 0365680
- Stanislaw J. Szarek and Dan Voiculescu, Volumes of restricted Minkowski sums and the free analogue of the entropy power inequality, Comm. Math. Phys. 178 (1996), no. 3, 563–570. MR 1395205
- Jean E. Taylor, Crystalline variational problems, Bull. Amer. Math. Soc. 84 (1978), no. 4, 568–588. MR 493671, DOI 10.1090/S0002-9904-1978-14499-1
- Yung Liang Tong, Probability inequalities in multivariate distributions, Probabilities and Mathematical Statistics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London-Toronto, Ont., 1980. MR 572617
- Neil S. Trudinger, Isoperimetric inequalities for quermassintegrals, Ann. Inst. H. Poincaré C Anal. Non Linéaire 11 (1994), no. 4, 411–425 (English, with English and French summaries). MR 1287239, DOI 10.1016/S0294-1449(16)30181-0
- B. Uhrin, Extensions and sharpenings of Brunn-Minkowski and Bonnesen inequalities, Intuitive geometry (Siófok, 1985) Colloq. Math. Soc. János Bolyai, vol. 48, North-Holland, Amsterdam, 1987, pp. 551–571. MR 910735
- B. Uhrin, Curvilinear extensions of the Brunn-Minkowski-Lusternik inequality, Adv. Math. 109 (1994), no. 2, 288–312. MR 1304754, DOI 10.1006/aima.1994.1088
- Richard A. Vitale, The Brunn-Minkowski inequality for random sets, J. Multivariate Anal. 33 (1990), no. 2, 286–293. MR 1055274, DOI 10.1016/0047-259X(90)90052-J
- Richard A. Vitale, The translative expectation of a random set, J. Math. Anal. Appl. 160 (1991), no. 2, 556–562. MR 1126137, DOI 10.1016/0022-247X(91)90325-T
- Roger Webster, Convexity, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1994. MR 1443208
- L. Kantorovitch, The method of successive approximations for functional equations, Acta Math. 71 (1939), 63–97. MR 95, DOI 10.1007/BF02547750
- Gaoyong Zhang, The affine Sobolev inequality, J. Differential Geom. 53 (1999), no. 1, 183–202. MR 1776095
- Gaoyong Zhang, A positive solution to the Busemann-Petty problem in $\mathbf R^4$, Ann. of Math. (2) 149 (1999), no. 2, 535–543. MR 1689339, DOI 10.2307/120974
Additional Information
- R. J. Gardner
- Affiliation: Department of Mathematics, Western Washington University, Bellingham, Washington 98225-9063
- MR Author ID: 195745
- Email: gardner@baker.math.wwu.edu
- Received by editor(s): February 1, 2001
- Received by editor(s) in revised form: November 28, 2001
- Published electronically: April 8, 2002
- Additional Notes: Supported in part by NSF Grant DMS 9802388.
- © Copyright 2002 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 39 (2002), 355-405
- MSC (2000): Primary 26D15, 52A40
- DOI: https://doi.org/10.1090/S0273-0979-02-00941-2
- MathSciNet review: 1898210