Book Review
The AMS does not provide abstracts of book reviews.
You may download the entire review from the links below.
Full text of review:
PDF
This review is available free of charge.
Book Information:
Author:
Frédéric Hélein
Title:
Constant mean curvature surfaces, harmonic maps and integrable systems
Additional book information:
Lectures in Mathematics, ETH Zürich, Birkhäuser,
Basel-- Boston--Berlin,
2000,
xii+227 pp.,
ISBN 3-7643-6576-5,
$29.95$
[A] U. Abresch: Constant mean curvature tori in terms of elliptic functions. J. Reine Angew. Math. 374 (1987), 169-192. MR 88e:53006
[BR] F. Burstall and J.H. Rawnsley: Twistor Theory for Riemannian Symmetric Spaces. Lecture Notes in Math. 1424 Springer-Verlag, Berlin, 1990. MR 91m:58039
[G] M. Guest: Harmonic Maps, Loop Groups, and Integrable Systems. London Mathematical Society Student Texts, 38 Cambridge University Press, Cambridge, 1997. MR 99g:58036
[DPW] J. Dorfmeister, F. Pedit, and H. Wu: Weierstrass type representation of harmonic maps into symmetric spaces. Comm. Anal. Geom. 6(1998), no. 4, 633-668. MR 2000d:53099
[FPPS] D. Ferus, F. Pedit, U. Pinkhall and I. Sterling: Minimal tori in
. J. Reine Angew. Math. 429 (1992), 1-47. MR 93h:53008
[FW] A. Fordy and J. Wood: Harmonic Maps and Integrable Systems. Aspects of Mathematics E23 Cambridge University Press, Verweg, 1994, see also http://www.amst.leeds.ac.uk/Pure/staff/wood/FordyWood. MR 95m:58047
[H] H. Hopf: Über Flächen mit einer Relation zwischen den Hauptkrümmungen. Math. Nachr. 4 (1951). 232-249. MR 12:634f
[K] N. Kapouleas: Compact constant mean curvature surfaces in Euclidean three-space. J. Differential Geom. 33 (1991), no. 3, 683-715. MR 93a:53007b
[PS] U. Pinkall and I. Sterling: On the classification of constant mean curvature tori. Ann. of Math. (2) 130 (1989), no. 2, 407-451. MR 91b:53009
[RV] E. Ruh and J. Vilms: The tension field of the Gauss map. Trans. Amer. Math. Soc. 149 1970 569-573. MR 41:4400
[W] H. Wente: Counterexample to a conjecture of H. Hopf. Pacific J. Math. 121 (1986), no. 1, 193-243. MR 87d:53013
- [A]
- U. Abresch: Constant mean curvature tori in terms of elliptic functions. J. Reine Angew. Math. 374 (1987), 169-192. MR 88e:53006
- [BR]
- F. Burstall and J.H. Rawnsley: Twistor Theory for Riemannian Symmetric Spaces. Lecture Notes in Math. 1424 Springer-Verlag, Berlin, 1990. MR 91m:58039
- [G]
- M. Guest: Harmonic Maps, Loop Groups, and Integrable Systems. London Mathematical Society Student Texts, 38 Cambridge University Press, Cambridge, 1997. MR 99g:58036
- [DPW]
- J. Dorfmeister, F. Pedit, and H. Wu: Weierstrass type representation of harmonic maps into symmetric spaces. Comm. Anal. Geom. 6(1998), no. 4, 633-668. MR 2000d:53099
- [FPPS]
- D. Ferus, F. Pedit, U. Pinkhall and I. Sterling: Minimal tori in
. J. Reine Angew. Math. 429 (1992), 1-47. MR 93h:53008
- [FW]
- A. Fordy and J. Wood: Harmonic Maps and Integrable Systems. Aspects of Mathematics E23 Cambridge University Press, Verweg, 1994, see also http://www.amst.leeds.ac.uk/Pure/staff/wood/FordyWood. MR 95m:58047
- [H]
- H. Hopf: Über Flächen mit einer Relation zwischen den Hauptkrümmungen. Math. Nachr. 4 (1951). 232-249. MR 12:634f
- [K]
- N. Kapouleas: Compact constant mean curvature surfaces in Euclidean three-space. J. Differential Geom. 33 (1991), no. 3, 683-715. MR 93a:53007b
- [PS]
- U. Pinkall and I. Sterling: On the classification of constant mean curvature tori. Ann. of Math. (2) 130 (1989), no. 2, 407-451. MR 91b:53009
- [RV]
- E. Ruh and J. Vilms: The tension field of the Gauss map. Trans. Amer. Math. Soc. 149 1970 569-573. MR 41:4400
- [W]
- H. Wente: Counterexample to a conjecture of H. Hopf. Pacific J. Math. 121 (1986), no. 1, 193-243. MR 87d:53013
Review Information:
Reviewer:
Robert M. Hardt
Affiliation:
Rice University
Email:
hardt@rice.edu
Journal:
Bull. Amer. Math. Soc.
40 (2003), 121-123
Published electronically:
October 16, 2002
Review copyright:
© Copyright 2002
American Mathematical Society