Recent progress in algebraic combinatorics
HTML articles powered by AMS MathViewer
- by Richard P. Stanley PDF
- Bull. Amer. Math. Soc. 40 (2003), 55-68 Request permission
Abstract:
We survey three recent breakthroughs in algebraic combinatorics. The first is the proof by Knutson and Tao, and later Derksen and Weyman, of the saturation conjecture for Littlewood-Richardson coefficients. The second is the proof of the $n!$ and $(n+1)^{n-1}$ conjectures by Haiman. The final breakthrough is the determination by Baik, Deift, and Johansson of the limiting behavior of the length of the longest increasing subsequence of a random permutation.References
- Jinho Baik, Percy Deift, and Kurt Johansson, On the distribution of the length of the longest increasing subsequence of random permutations, J. Amer. Math. Soc. 12 (1999), no. 4, 1119–1178. MR 1682248, DOI 10.1090/S0894-0347-99-00307-0
- A. D. Berenstein and A. V. Zelevinsky, Triple multiplicities for $\textrm {sl}(r+1)$ and the spectrum of the exterior algebra of the adjoint representation, J. Algebraic Combin. 1 (1992), no. 1, 7–22. MR 1162639, DOI 10.1023/A:1022429213282
- François Bergeron, Adriano Garsia, and Glenn Tesler, Multiple left regular representations generated by alternants, J. Combin. Theory Ser. A 91 (2000), no. 1-2, 49–83. In memory of Gian-Carlo Rota. MR 1779775, DOI 10.1006/jcta.2000.3089
- Alexei Borodin, Andrei Okounkov, and Grigori Olshanski, Asymptotics of Plancherel measures for symmetric groups, J. Amer. Math. Soc. 13 (2000), no. 3, 481–515. MR 1758751, DOI 10.1090/S0894-0347-00-00337-4
- Anders Skovsted Buch, The saturation conjecture (after A. Knutson and T. Tao), Enseign. Math. (2) 46 (2000), no. 1-2, 43–60. With an appendix by William Fulton. MR 1769536
- Percy Deift, Integrable systems and combinatorial theory, Notices Amer. Math. Soc. 47 (2000), no. 6, 631–640. MR 1764262
- Harm Derksen and Jerzy Weyman, Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients, J. Amer. Math. Soc. 13 (2000), no. 3, 467–479. MR 1758750, DOI 10.1090/S0894-0347-00-00331-3
- William Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. MR 1464693
- William Fulton, Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc. (N.S.) 37 (2000), no. 3, 209–249. MR 1754641, DOI 10.1090/S0273-0979-00-00865-X g-hag A. M. Garsia and J. Haglund, A proof of the $q,t$-Catalan positivity conjecture, Discrete Math., to appear, www.math.upenn.edu/$\sim$jhaglund.
- A. M. Garsia and M. Haiman, A remarkable $q,t$-Catalan sequence and $q$-Lagrange inversion, J. Algebraic Combin. 5 (1996), no. 3, 191–244. MR 1394305, DOI 10.1023/A:1022476211638
- Adriano M. Garsia and Mark Haiman, A graded representation model for Macdonald’s polynomials, Proc. Nat. Acad. Sci. U.S.A. 90 (1993), no. 8, 3607–3610. MR 1214091, DOI 10.1073/pnas.90.8.3607
- A. M. Garsia and M. Haiman, Some natural bigraded $S_n$-modules and $q,t$-Kostka coefficients, Electron. J. Combin. 3 (1996), no. 2, Research Paper 24, approx. 60. The Foata Festschrift. MR 1392509, DOI 10.37236/1282
- Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53 (1990), no. 2, 257–285. MR 1041448, DOI 10.1016/0097-3165(90)90060-A
- Curtis Greene, An extension of Schensted’s theorem, Advances in Math. 14 (1974), 254–265. MR 354395, DOI 10.1016/0001-8708(74)90031-0 hag J. Haglund, Conjectured statistics for the $q,t$-Catalan numbers, Advances in Math., to appear, www.math.upenn.edu/$\sim$jhaglund.
- Mark Haiman, Macdonald polynomials and geometry, New perspectives in algebraic combinatorics (Berkeley, CA, 1996–97) Math. Sci. Res. Inst. Publ., vol. 38, Cambridge Univ. Press, Cambridge, 1999, pp. 207–254. MR 1731818
- Mark Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001), no. 4, 941–1006. MR 1839919, DOI 10.1090/S0894-0347-01-00373-3 hai:npo M. Haiman, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, preliminary draft, www/math.berkeley.edu/$\sim$mhaiman; abbreviated version in Physics and Combinatorics (A. N. Kirillov and N. Liskova, eds.), World Scientific, London, 2001, pp. 1–21. hall P. Hall, The algebra of partitions, in Proc. 4th Canadian Math. Congress (Banff), 1959, pp. 147–159.
- J. M. Hammersley, A few seedlings of research, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 345–394. MR 0405665
- G. J. Heckman, Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups, Invent. Math. 67 (1982), no. 2, 333–356. MR 665160, DOI 10.1007/BF01393821
- Kurt Johansson, Discrete orthogonal polynomial ensembles and the Plancherel measure, Ann. of Math. (2) 153 (2001), no. 1, 259–296. MR 1826414, DOI 10.2307/2661375
- Alexander A. Klyachko, Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.) 4 (1998), no. 3, 419–445. MR 1654578, DOI 10.1007/s000290050037
- Donald E. Knuth, The art of computer programming. Volume 3, Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1973. Sorting and searching. MR 0445948
- Allen Knutson and Terence Tao, The honeycomb model of $\textrm {GL}_n(\textbf {C})$ tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc. 12 (1999), no. 4, 1055–1090. MR 1671451, DOI 10.1090/S0894-0347-99-00299-4
- Allen Knutson and Terence Tao, Honeycombs and sums of Hermitian matrices, Notices Amer. Math. Soc. 48 (2001), no. 2, 175–186. MR 1811121
- B. F. Logan and L. A. Shepp, A variational problem for random Young tableaux, Advances in Math. 26 (1977), no. 2, 206–222. MR 1417317, DOI 10.1016/0001-8708(77)90030-5 macdsf I. G. Macdonald, A new class of symmetric functions, Actes 20$^\mathrm {e}$ Séminaire Lotharingien, Publ. I.R.M.A., Strasbourg, 1992, pp. 5–39.
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- F. Miller Maley, The Hall polynomial revisited, J. Algebra 184 (1996), no. 2, 363–371. MR 1409218, DOI 10.1006/jabr.1996.0264
- Andrei Okounkov, Random matrices and random permutations, Internat. Math. Res. Notices 20 (2000), 1043–1095. MR 1802530, DOI 10.1155/S1073792800000532
- Doron Rotem, On a correspondence between binary trees and a certain type of permutation, Information Processing Lett. 4 (1975/76), no. 3, 58–61. MR 388841, DOI 10.1016/0020-0190(75)90002-2
- C. Schensted, Longest increasing and decreasing subsequences, Canadian J. Math. 13 (1961), 179–191. MR 121305, DOI 10.4153/CJM-1961-015-3
- Larry Smith, Polynomial invariants of finite groups, Research Notes in Mathematics, vol. 6, A K Peters, Ltd., Wellesley, MA, 1995. MR 1328644, DOI 10.1201/9781439864470
- Richard P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 3, 475–511. MR 526968, DOI 10.1090/S0273-0979-1979-14597-X
- Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282, DOI 10.1017/CBO9780511609589 tesler G. Tesler, Semi-primary lattices and tableaux algorithms, Ph.D. thesis, M.I.T., 1995.
- Craig A. Tracy and Harold Widom, Level-spacing distributions and the Airy kernel, Comm. Math. Phys. 159 (1994), no. 1, 151–174. MR 1257246, DOI 10.1007/BF02100489
- A. M. Veršik and S. V. Kerov, Asymptotic behavior of the Plancherel measure of the symmetric group and the limit form of Young tableaux, Dokl. Akad. Nauk SSSR 233 (1977), no. 6, 1024–1027 (Russian). MR 0480398
- Andrei Zelevinsky, Littlewood-Richardson semigroups, New perspectives in algebraic combinatorics (Berkeley, CA, 1996–97) Math. Sci. Res. Inst. Publ., vol. 38, Cambridge Univ. Press, Cambridge, 1999, pp. 337–345. MR 1731821
Additional Information
- Richard P. Stanley
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 166285
- Email: rstan@math.mit.edu
- Received by editor(s): October 23, 2000
- Received by editor(s) in revised form: January 4, 2002
- Published electronically: October 11, 2002
- Additional Notes: Partially supported by NSF grant #DMS-9988459
- © Copyright 2002 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 40 (2003), 55-68
- MSC (2000): Primary 05E99; Secondary 05E05, 14C05, 15A18, 60C05
- DOI: https://doi.org/10.1090/S0273-0979-02-00966-7
- MathSciNet review: 1943133