Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

The Hironaka theorem on resolution of singularities (Or: A proof we always wanted to understand)


Author: Herwig Hauser
Journal: Bull. Amer. Math. Soc. 40 (2003), 323-403
MSC (2000): Primary 14B05, 14E15, 32S05, 32S10, 32S45
DOI: https://doi.org/10.1090/S0273-0979-03-00982-0
Published electronically: May 6, 2003
MathSciNet review: 1978567
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is a handyman’s manual for learning how to resolve the singularities of algebraic varieties defined over a field of characteristic zero by sequences of blowups.


References [Enhancements On Off] (What's this?)

  • Jose M. Aroca, Heisuke Hironaka, and José L. Vicente, The theory of the maximal contact, Instituto “Jorge Juan” de Matemáticas, Consejo Superior de Investigaciones Cientificas, Madrid, 1975. Memorias de Matemática del Instituto “Jorge Juan”, No. 29. [Mathematical Memoirs of the “Jorge Juan” Institute, No. 29]. MR 0444999
  • José M. Aroca, Heisuke Hironaka, and José L. Vicente, Desingularization theorems, Memorias de Matemática del Instituto “Jorge Juan” [Mathematical Memoirs of the Jorge Juan Institute], vol. 30, Consejo Superior de Investigaciones Científicas, Madrid, 1977. MR 480502
  • Bravo, A., Encinas, S., Villamayor, O.: A simplified proof of desingularization and applications. Preprint. Download at http://arXiv.org/archive/math, math.AG/0206244.
  • Edward Bierstone and Pierre D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), no. 2, 207–302. MR 1440306, DOI https://doi.org/10.1007/s002220050141
  • Edward Bierstone and Pierre D. Milman, Uniformization of analytic spaces, J. Amer. Math. Soc. 2 (1989), no. 4, 801–836. MR 1001853, DOI https://doi.org/10.1090/S0894-0347-1989-1001853-2
  • Edward Bierstone and Pierre D. Milman, A simple constructive proof of canonical resolution of singularities, Effective methods in algebraic geometry (Castiglioncello, 1990) Progr. Math., vol. 94, Birkhäuser Boston, Boston, MA, 1991, pp. 11–30. MR 1106412, DOI https://doi.org/10.1007/978-1-4612-0441-1_2
  • Edward Bierstone and Pierre D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5–42. MR 972342
  • Edward Bierstone and Pierre D. Milman, Resolution of singularities, Several complex variables (Berkeley, CA, 1995–1996) Math. Sci. Res. Inst. Publ., vol. 37, Cambridge Univ. Press, Cambridge, 1999, pp. 43–78. MR 1748600
  • Bierstone, E., Milman, P.: Desingularization algorithms I. The role of exceptional divisors. Preprint. Download at http://arXiv.org/archive/math, math.AG/0207098.
  • Bodnár, G.: Algorithmic resolution of singularities. Thesis, Univ. Linz, 2001.
  • Bodnár, G.: Computation of blowing up centers. J. Pure Appl. Alg. 179 (2003), 221–233.
  • Bodnár, G.: Algorithmic tests for the normal crossings property. Preprint, Univ. Linz.
  • Gábor Bodnár and Josef Schicho, Automated resolution of singularities for hypersurfaces, J. Symbolic Comput. 30 (2000), no. 4, 401–428. MR 1784750, DOI https://doi.org/10.1006/jsco.1999.0414
  • Gábor Bodnár and Josef Schicho, Two computational techniques for singularity resolution, J. Symbolic Comput. 32 (2001), no. 1-2, 39–54. Computer algebra and mechanized reasoning (St. Andrews, 2000). MR 1840384, DOI https://doi.org/10.1006/jsco.2001.0452
  • Gábor Bodnár and Josef Schicho, A computer program for the resolution of singularities, Resolution of singularities (Obergurgl, 1997) Progr. Math., vol. 181, Birkhäuser, Basel, 2000, pp. 231–238. MR 1748621, DOI https://doi.org/10.1007/978-3-0348-8399-3_7
  • A. Bravo and O. Villamayor U., Strengthening the theorem of embedded desingularization, Math. Res. Lett. 8 (2001), no. 1-2, 79–89. MR 1825262, DOI https://doi.org/10.4310/MRL.2001.v8.n1.a9
  • Bravo, A., Villamayor, O.: A strengthening of resolution of singularities in characteristic zero. Proc. London Math. Soc. 86 (2003), 327–357.
  • Encinas, S., Hauser, H.: Strong resolution of singularities in characteristic zero. Comment. Math. Helv. 77 (2002), 821–845.
  • S. Encinas and O. Villamayor, Good points and constructive resolution of singularities, Acta Math. 181 (1998), no. 1, 109–158. MR 1654779, DOI https://doi.org/10.1007/BF02392749
  • Santiago Encinas and Orlando Villamayor, A course on constructive desingularization and equivariance, Resolution of singularities (Obergurgl, 1997) Progr. Math., vol. 181, Birkhäuser, Basel, 2000, pp. 147–227. MR 1748620
  • Encinas, S., Villamayor, O.: A proof of desingularization over fields of characteristic zero. Preprint. Download at http://arXiv.org/archive/math, math.AG/0101208.
  • A. Grothendieck, Travaux de Heisouké Hironaka sur la résolution des singularités, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 7–9 (French). MR 0414283
  • Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; ibid. (2) 79 (1964), 205–326. MR 0199184, DOI https://doi.org/10.2307/1970547
  • Heisuke Hironaka, Idealistic exponents of singularity, Algebraic geometry (J. J. Sylvester Sympos., Johns Hopkins Univ., Baltimore, Md., 1976) Johns Hopkins Univ. Press, Baltimore, Md., 1977, pp. 52–125. MR 0498562
  • Heisuke Hironaka, Desingularization of complex-analytic varieties, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 627–631 (French). MR 0425170
  • Kunz, E.: Algebraische Geometrie IV. Vorlesung Univ. Regensburg.
  • Joseph Lipman, Introduction to resolution of singularities, Algebraic geometry (Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974) Amer. Math. Soc., Providence, R.I., 1975, pp. 187–230. MR 0389901
  • Matsuki, K.: Notes on the inductive algorithm of resolution of singularities by S. Encinas and O. Villamayor. Preprint. Download at http://arXiv.org/archive/math, math.AG/0103120.
  • Orlando Villamayor, Constructiveness of Hironaka’s resolution, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 1, 1–32. MR 985852, DOI https://doi.org/10.24033/asens.1573
  • Villamayor, O.: Patching local uniformizations. Ann. Scient. Ec. Norm. Sup. Paris 25 (1992), 629-677.
  • Villamayor, O.: An introduction to the algorithm of resolution. In: Algebraic Geometry and Singularities (eds. A. Campillo, L. Narváez). Proc. Conf. on Singularities La Rábida. Birkhäuser, 1996.
  • Abhyankar, S.: Local uniformization of algebraic surfaces over ground fields of characteristic $p\neq 0$. Ann. Math. 63 (1956), 491-526.
  • Shreeram S. Abhyankar, Resolution of singularities of arithmetical surfaces, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963) Harper & Row, New York, 1965, pp. 111–152. MR 0200272
  • S. S. Abhyankar, Resolution of singularities of embedded algebraic surfaces, 2nd ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. MR 1617523
  • Shreeram Shankar Abhyankar, An algorithm on polynomials in one indeterminate with coefficients in a two dimensional regular local domain, Ann. Mat. Pura Appl. (4) 71 (1966), 25–59. MR 207699, DOI https://doi.org/10.1007/BF02413732
  • Abhyankar, S.: Three dimensional embedded uniformization in characteristic $p$. Lectures at Purdue Univeristy, Notes by M.F. Huang, 1968.
  • Shreeram S. Abhyankar, Good points of a hypersurface, Adv. in Math. 68 (1988), no. 2, 87–256. MR 934366, DOI https://doi.org/10.1016/0001-8708%2888%2990015-1
  • Abhyankar, S.: Current status of the resolution problem. Summer Institute on Algebraic Geometry 1964. Proc. Amer. Math. Soc.
  • Shreeram S. Abhyankar, Desingularization of plane curves, Singularities, Part 1 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 1–45. MR 713043
  • Shreeram S. Abhyankar, Algebraic geometry for scientists and engineers, Mathematical Surveys and Monographs, vol. 35, American Mathematical Society, Providence, RI, 1990. MR 1075991
  • Shreeram Abhyankar, Ramification theoretic methods in algebraic geometry, Annals of Mathematics Studies, No. 43, Princeton University Press, Princeton, N.J., 1959. MR 0105416
  • Abhyankar, S.: On the valuations centered in a local domain. Amer. J. Math. 78 (1956), 321-348.
  • Shreeram Shankar Abhyankar, Resolution of singularities of algebraic surfaces, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, pp. 1–11. MR 0257080
  • Shreeram S. Abhyankar, Resolution of singularities and modular Galois theory, Bull. Amer. Math. Soc. (N.S.) 38 (2001), no. 2, 131–169. MR 1816069, DOI https://doi.org/10.1090/S0273-0979-00-00892-2
  • D. Abramovich and A. J. de Jong, Smoothness, semistability, and toroidal geometry, J. Algebraic Geom. 6 (1997), no. 4, 789–801. MR 1487237
  • Shreeram S. Abhyankar and Tzuong Tsieng Moh, Newton-Puiseux expansion and generalized Tschirnhausen transformation. I, II, J. Reine Angew. Math. 260 (1973), 47–83; ibid. 261 (1973), 29–54. MR 337955, DOI https://doi.org/10.1515/crll.1973.260.47
  • Artin, M.: Lipman’s proof of resolution of singularities. In: Arithmetic Geometry (eds. G. Cornell, J. H. Silverman), Springer, New York, 1986.
  • Dan Abramovich and Jianhua Wang, Equivariant resolution of singularities in characteristic $0$, Math. Res. Lett. 4 (1997), no. 2-3, 427–433. MR 1453072, DOI https://doi.org/10.4310/MRL.1997.v4.n3.a11
  • Brandenberg, M.: Aufblasungen affiner Varietäten. Thesis, Univ. Zürich, 1992.
  • Geir Ellingsrud and Manfred Lehn, Irreducibility of the punctual quotient scheme of a surface, Ark. Mat. 37 (1999), no. 2, 245–254. MR 1714770, DOI https://doi.org/10.1007/BF02412213
  • Egbert Brieskorn and Horst Knörrer, Ebene algebraische Kurven, Birkhäuser Verlag, Basel-Boston, Mass., 1981 (German). MR 646612
  • Bruce Michael Bennett, On the characteristic functions of a local ring, Ann. of Math. (2) 91 (1970), 25–87. MR 252388, DOI https://doi.org/10.2307/1970601
  • Fedor A. Bogomolov and Tony G. Pantev, Weak Hironaka theorem, Math. Res. Lett. 3 (1996), no. 3, 299–307. MR 1397679, DOI https://doi.org/10.4310/MRL.1996.v3.n3.a1
  • Egbert Brieskorn, Über die Auflösung gewisser Singularitäten von holomorphen Abbildungen, Math. Ann. 166 (1966), 76–102 (German). MR 206973, DOI https://doi.org/10.1007/BF01361440
  • Egbert Brieskorn, Die Auflösung der rationalen Singularitäten holomorpher Abbildungen, Math. Ann. 178 (1968), 255–270 (German). MR 233819, DOI https://doi.org/10.1007/BF01352140
  • A. Bravo and O. Villamayor U., Smoothness and tangent bundles of arithmetical schemes, Math. Z. 239 (2002), no. 1, 159–182. MR 1879334, DOI https://doi.org/10.1007/s002090100290
  • Antonio Campillo, Algebroid curves in positive characteristic, Lecture Notes in Mathematics, vol. 813, Springer, Berlin, 1980. MR 584440
  • Vincent Cossart, Jean Giraud, and Ulrich Orbanz, Resolution of surface singularities, Lecture Notes in Mathematics, vol. 1101, Springer-Verlag, Berlin, 1984. With an appendix by H. Hironaka. MR 775681
  • Vincent Cossart, Desingularization of embedded excellent surfaces, Tohoku Math. J. (2) 33 (1981), no. 1, 25–33. MR 613106, DOI https://doi.org/10.2748/tmj/1178229492
  • Cossart, V.: Polyèdre caractéristique d’une singularité. Thèse d’Etat, Orsay, 1987.
  • Vincent Cossart, Uniformisation et désingularisation des surfaces d’après Zariski, Resolution of singularities (Obergurgl, 1997) Progr. Math., vol. 181, Birkhäuser, Basel, 2000, pp. 239–258 (French). MR 1748622
  • V. Cossart, Contact maximal en caractéristique positive et petite multiplicité, Duke Math. J. 63 (1991), no. 1, 57–64 (French). MR 1106937, DOI https://doi.org/10.1215/S0012-7094-91-06303-9
  • Cossart, V.: Desingularization in dimension two. In: Resolution of surface singularities. Lecture Notes in Math. vol. 1101, Springer, 1984.
  • F. Cano and R. Piedra, Characteristic polygon of surface singularities, Géométrie algébrique et applications, II (La Rábida, 1984) Travaux en Cours, vol. 23, Hermann, Paris, 1987, pp. 27–42. MR 907920
  • Eduardo Casas-Alvero, Singularities of plane curves, London Mathematical Society Lecture Note Series, vol. 276, Cambridge University Press, Cambridge, 2000. MR 1782072
  • Steven Dale Cutkosky, Local factorization of birational maps, Adv. Math. 132 (1997), no. 2, 167–315. MR 1491444, DOI https://doi.org/10.1006/aima.1997.1675
  • Steven Dale Cutkosky, Local monomialization, Geometric and combinatorial aspects of commutative algebra (Messina, 1999) Lecture Notes in Pure and Appl. Math., vol. 217, Dekker, New York, 2001, pp. 165–173. MR 1824226
  • Steven Dale Cutkosky, Local monomialization and factorization of morphisms, Astérisque 260 (1999), vi+143 (English, with English and French summaries). MR 1734239
  • Dale Cutkosky and Olivier Piltant, Monomial resolutions of morphisms of algebraic surfaces, Comm. Algebra 28 (2000), no. 12, 5935–5959. Special issue in honor of Robin Hartshorne. MR 1808613, DOI https://doi.org/10.1080/00927870008827198
  • Steven Dale Cutkosky, Simultaneous resolution of singularities, Proc. Amer. Math. Soc. 128 (2000), no. 7, 1905–1910. MR 1646312, DOI https://doi.org/10.1090/S0002-9939-99-05191-6
  • Steven Dale Cutkosky, When are the blow ups of two ideals the same scheme?, Comm. Algebra 19 (1991), no. 4, 1119–1124. MR 1102330, DOI https://doi.org/10.1080/00927879108824193
  • Steven Dale Cutkosky, Symbolic algebras of monomial primes, J. Reine Angew. Math. 416 (1991), 71–89. MR 1099946, DOI https://doi.org/10.1515/crll.1991.416.71
  • A. J. de Jong, Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 51–93. MR 1423020
  • Encinas, S.: Constructive resolution of singularities of families of schemes. Thesis, Valladolid, 1996.
  • David Eisenbud and Joe Harris, The geometry of schemes, Graduate Texts in Mathematics, vol. 197, Springer-Verlag, New York, 2000. MR 1730819
  • Encinas, S., Nobile, A., Villamayor, O.: On algorithmic equiresolution and stratification of Hilbert schemes. Proc. London Math. Soc. 86 (2003), 607–648.
  • Jean Giraud, Étude locale des singularités, U.E.R. Mathématique, Université Paris XI, Orsay, 1972. Cours de 3ème cycle, 1971–1972; Publications Mathématiques d’Orsay, No. 26. MR 0409458
  • Jean Giraud, Sur la théorie du contact maximal, Math. Z. 137 (1974), 285–310 (French). MR 460712, DOI https://doi.org/10.1007/BF01214371
  • Jean Giraud, Contact maximal en caractéristique positive, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 2, 201–234 (French). MR 384799
  • Giraud, J.: Desingularization in low dimension. In: Resolution of surface singularities. Lecture Notes in Math. vol. 1101, Springer, 1984, 51-78.
  • A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. 24 (1965), 231 (French). MR 199181
  • Rebecca Goldin and Bernard Teissier, Resolving singularities of plane analytic branches with one toric morphism, Resolution of singularities (Obergurgl, 1997) Progr. Math., vol. 181, Birkhäuser, Basel, 2000, pp. 315–340. MR 1748626
  • Hauser, H.: Three power series techniques. Proc. London Math. Soc., to appear.
  • Herwig Hauser, Seventeen obstacles for resolution of singularities, Singularities (Oberwolfach, 1996) Progr. Math., vol. 162, Birkhäuser, Basel, 1998, pp. 289–313. MR 1652479
  • Herwig Hauser, Excellent surfaces and their taut resolution, Resolution of singularities (Obergurgl, 1997) Progr. Math., vol. 181, Birkhäuser, Basel, 2000, pp. 341–373. MR 1748627
  • Hauser, H.: Mysterious resolution in positive characteristic. Preprint, Univ. Innsbruck.
  • Heisuke Hironaka, Characteristic polyhedra of singularities, J. Math. Kyoto Univ. 7 (1967), 251–293. MR 225779, DOI https://doi.org/10.1215/kjm/1250524227
  • Heisuke Hironaka, Certain numerical characters of singularities, J. Math. Kyoto Univ. 10 (1970), 151–187. MR 292831, DOI https://doi.org/10.1215/kjm/1250523817
  • Hironaka, H.: Desingularization of excellent surfaces. Notes by B. Bennett at the Conference on Algebraic Geometry, Bowdoin 1967. Reprinted in: Cossart, V., Giraud, J., Orbanz, U.: Resolution of surface singularities. Lecture Notes in Math. 1101, Springer, 1984.
  • Heisuke Hironaka, Additive groups associated with points of a projective space, Ann. of Math. (2) 92 (1970), 327–334. MR 269658, DOI https://doi.org/10.2307/1970839
  • Heisuke Hironaka, Schemes, etc, Algebraic geometry, Oslo 1970 (Proc. Fifth Nordic Summer School in Math.), Wolters-Noordhoff, Groningen, 1972, pp. 291–313. MR 0393028
  • H. Hironaka, On the presentations of resolution data, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 135–151. Noted and with an appendix by T. T. Moh. MR 1463700
  • Hironaka, H.: Bimeromorphic smoothing of a complex analytic space. Mimeographed notes. University of Warwick, 1971.
  • Heisuke Hironaka, Stratification and flatness, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 199–265. MR 0499286
  • Hironaka, H.: Preface to Zariski’s collected papers I, 307-312. MIT Press, 1979.
  • Heisuke Hironaka, Gardening of infinitely near singularities, Algebraic geometry, Oslo 1970 (Proc. Fifth Nordic Summer School in Math.), Wolters-Noordhoff, Groningen, 1972, pp. 315–332. MR 0393555
  • Heisuke Hironaka, On resolution of singularities (characteristic zero), Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 507–521. MR 0175898
  • M. Herrmann, S. Ikeda, and U. Orbanz, Equimultiplicity and blowing up, Springer-Verlag, Berlin, 1988. An algebraic study; With an appendix by B. Moonen. MR 954831
  • Jung, H.: Darstellung der Funktionen eines algebraischen Körpers zweier unabhängiger Veränderlicher $x$, $y$ in der Umgebung einer Stelle $x=a$, $y=b$. J. Reine Angew. Math. 133 (1908), 289-314.
  • Lê Dũng Tráng and Mutsuo Oka, On resolution complexity of plane curves, Kodai Math. J. 18 (1995), no. 1, 1–36. MR 1317003, DOI https://doi.org/10.2996/kmj/1138043350
  • Joseph Lipman, Desingularization of two-dimensional schemes, Ann. of Math. (2) 107 (1978), no. 1, 151–207. MR 491722, DOI https://doi.org/10.2307/1971141
  • Joseph Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 195–279. MR 276239
  • Joseph Lipman, Topological invariants of quasi-ordinary singularities, Mem. Amer. Math. Soc. 74 (1988), no. 388, 1–107. MR 954947, DOI https://doi.org/10.1090/memo/0388
  • Joseph Lipman, On complete ideals in regular local rings, Algebraic geometry and commutative algebra, Vol. I, Kinokuniya, Tokyo, 1988, pp. 203–231. MR 977761
  • Lejeune, M., Teissier, B.: Contribution à l’étude des singularités du point de vue du polygone de Newton. Thèse d’Etat, Paris, 1973.
  • Moody, J.: The (still open) question about iterating Nash blowups. Preprint, Univ. Warwick.
  • John Atwell Moody, Divisibility of ideals and blowing up, Illinois J. Math. 45 (2001), no. 1, 163–165. MR 1849991
  • John Atwell Moody, On resolving singularities, J. London Math. Soc. (2) 64 (2001), no. 3, 548–564. MR 1865549, DOI https://doi.org/10.1112/S0024610701002745
  • John Atwell Moody, On resolving vector fields, J. Algebra 189 (1997), no. 1, 90–100. MR 1432366, DOI https://doi.org/10.1006/jabr.1996.6853
  • T. T. Moh, On a stability theorem for local uniformization in characteristic $p$, Publ. Res. Inst. Math. Sci. 23 (1987), no. 6, 965–973. MR 935710, DOI https://doi.org/10.2977/prims/1195175867
  • T. T. Moh, Quasi-canonical uniformization of hypersurface singularities of characteristic zero, Comm. Algebra 20 (1992), no. 11, 3207–3249. MR 1186705, DOI https://doi.org/10.1080/00927879208824512
  • T. T. Moh, On a Newton polygon approach to the uniformization of singularities of characteristic $p$, Algebraic geometry and singularities (La Rábida, 1991) Progr. Math., vol. 134, Birkhäuser, Basel, 1996, pp. 49–93. MR 1395176
  • S. B. Mulay, Equimultiplicity and hyperplanarity, Proc. Amer. Math. Soc. 89 (1983), no. 3, 407–413. MR 715854, DOI https://doi.org/10.1090/S0002-9939-1983-0715854-9
  • Muhly, H.T., Zariski, O.: The resolution of singularities of an algebraic curve. Amer. J. Math. 61 (1939), 107-114.
  • R. Narasimhan, Monomial equimultiple curves in positive characteristic, Proc. Amer. Math. Soc. 89 (1983), no. 3, 402–406. MR 715853, DOI https://doi.org/10.1090/S0002-9939-1983-0715853-7
  • R. Narasimhan, Hyperplanarity of the equimultiple locus, Proc. Amer. Math. Soc. 87 (1983), no. 3, 403–408. MR 684627, DOI https://doi.org/10.1090/S0002-9939-1983-0684627-8
  • Noether, M. Über die algebraischen Functionen einer und zweier Variabeln. Gött. Nachr. (1871), 267-278.
  • Tadao Oda, Infinitely very near singular points, Complex analytic singularities, Adv. Stud. Pure Math., vol. 8, North-Holland, Amsterdam, 1987, pp. 363–404. MR 894302, DOI https://doi.org/10.2969/aspm/00810363
  • Tadao Oda, Hironaka’s additive group scheme, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 181–219. MR 0472824
  • Tadao Oda, Hironaka group schemes and resolution of singularities, Algebraic geometry (Tokyo/Kyoto, 1982) Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 295–312. MR 726431, DOI https://doi.org/10.1007/BFb0099968
  • Tadao Oda, Convex bodies and algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 15, Springer-Verlag, Berlin, 1988. An introduction to the theory of toric varieties; Translated from the Japanese. MR 922894
  • Mutsuo Oka, Geometry of plane curves via toroidal resolution, Algebraic geometry and singularities (La Rábida, 1991) Progr. Math., vol. 134, Birkhäuser, Basel, 1996, pp. 95–121. MR 1395177
  • Vincent Cossart, Jean Giraud, and Ulrich Orbanz, Resolution of surface singularities, Lecture Notes in Mathematics, vol. 1101, Springer-Verlag, Berlin, 1984. With an appendix by H. Hironaka. MR 775681
  • Pfeifle, J.: Aufblasung monomialer Ideale. Diplomarbeit, Innsbruck, 1996.
  • Rosenberg, J.: Blowing up nonreduced toric subschemes of $\mathrm {A}^{n}$. Preprint, 1998.
  • Rodríguez Sánchez, C.: Good points and local resolution of threefold singularities. Thesis, Univ. Léon, 1998.
  • Jean-Pierre Serre, Algèbre locale. Multiplicités, Lecture Notes in Mathematics, vol. 11, Springer-Verlag, Berlin-New York, 1965 (French). Cours au Collège de France, 1957–1958, rédigé par Pierre Gabriel; Seconde édition, 1965. MR 0201468
  • Balwant Singh, Effect of a permissible blowing-up on the local Hilbert functions, Invent. Math. 26 (1974), 201–212. MR 352097, DOI https://doi.org/10.1007/BF01418949
  • Balwant Singh, Formal invariance of local characteristic functions, Seminar D. Eisenbud/B. Singh/W. Vogel, Vol. 1, Teubner-Texte zur Math., vol. 29, Teubner, Leipzig, 1980, pp. 44–59. MR 610062
  • Mark Spivakovsky, A solution to Hironaka’s polyhedra game, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 419–432. MR 717618
  • Mark Spivakovsky, A counterexample to Hironaka’s “hard” polyhedra game, Publ. Res. Inst. Math. Sci. 18 (1982), no. 3, 1009–1012. MR 688941, DOI https://doi.org/10.2977/prims/1195183292
  • Mark Spivakovsky, A counterexample to the theorem of Beppo Levi in three dimensions, Invent. Math. 96 (1989), no. 1, 181–183. MR 981741, DOI https://doi.org/10.1007/BF01393974
  • Urabe, T.: Resolution of singularities of germs in characteristic positive associated with valuation rings of iterated divisor type. Preprint, 1999.
  • Villamayor, O.: On equiresolution and a question of Zariski. Acta Math. 185 (2000), no. 1, 123-159.
  • Villamayor, O.: Tschirnhausen transformations revisited and the multiplicity of the embedded hypersurface. Colloquium on Homology and Representation Theory (Vaquerías, 1998). Bol. Acad. Nac. Cienc. (Córdoba) 65 (2000), 233-243.
  • Walker, R.J.: Reduction of singularities of an algebraic surface. Ann. Math. 36 (1935), 336-365.
  • Walker, R.J.: Algebraic Curves. Princeton Univ. Press 1950. Reprinted: Dover, 1962. ;
  • Youssin, B.: Newton polyhedra without coordinates. Memoirs Amer. Math. Soc. 87, no. 433 (1990), 1-74, 75-99. ;
  • Zariski, O.: The reduction of singularities of an algebraic surface. Ann. Math. 40 (1939), 639-689.
  • Zariski, O.: Local uniformization on algebraic varieties. Ann. Math. 41 (1940), 852-896.
  • Zariski, O.: A simplified proof for the resolution of singularities of an algebraic surface. Ann. Math. 43 (1942), 583-593.
  • Zariski, O.: Reduction of singularities of algebraic three dimensional varieties. Ann. Math. 45 (1944), 472-542.
  • Zariski, O.: The compactness of the Riemann manifold of an abstract field of algebraic functions. Bull. Amer. Math. Soc. 50 (1944), 683-691.
  • Zariski, O.: Exceptional singularities of an algebraic surface and their reduction. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., serie VIII, 43 (1967), 135-196.
  • Oscar Zariski, A new proof of the total embedded resolution theorem for algebraic surfaces (based on the theory of quasi-ordinary singularities), Amer. J. Math. 100 (1978), no. 2, 411–442. MR 489965, DOI https://doi.org/10.2307/2373856
  • Zariski, O.: Polynomial ideals defined by infinitely near base points. Amer. J. Math. 60 (1938), 151-204.
  • Oscar Zariski, Algebraic surfaces, Second supplemented edition, Springer-Verlag, New York-Heidelberg, 1971. With appendices by S. S. Abhyankar, J. Lipman, and D. Mumford; Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 61. MR 0469915
  • Zariski, O.: The concept of a simple point of an abstract algebraic variety. Trans. Amer. Math. Soc. 62 (1947), 1-52.
  • Zariski, O.: Normal varieties and birational correspondences. Bull. Amer. Math. Soc. 48 (1942), 402-413.
  • Oscar Zariski, Collected papers. Vol. I: Foundations of algebraic geometry and resolution of singularities, The MIT Press, Cambridge, Mass.-London, 1972. Edited by H. Hironaka and D. Mumford; Mathematicians of Our Time, Vol. 2. MR 0505100
  • Oscar Zariski, Collected papers. Vol. IV, Mathematicians of Our Time, vol. 16, MIT Press, Cambridge, Mass.-London, 1979. Equisingularity on algebraic varieties; Edited and with an introduction by J. Lipman and B. Teissier. MR 545653
  • Zariski, O., Samuel P.: Commutative Algebra, vol. I, II. Van Nostrand 1958, 1960. Reprints: Graduate Texts in Mathematics, Vol. 28, 29. Springer, 1975. ; ; ;

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 14B05, 14E15, 32S05, 32S10, 32S45

Retrieve articles in all journals with MSC (2000): 14B05, 14E15, 32S05, 32S10, 32S45


Additional Information

Herwig Hauser
Affiliation: Universität Innsbruck, A-6020 Innsbruck, Austria
MR Author ID: 82620
Email: herwig.hauser@uibk.ac.at

Received by editor(s): June 25, 2002
Received by editor(s) in revised form: December 3, 2002
Published electronically: May 6, 2003
Additional Notes: Supported in part by FWF-Project P-15551 of the Austrian Ministry of Science
Article copyright: © Copyright 2003 American Mathematical Society