Spectra of hyperbolic surfaces
HTML articles powered by AMS MathViewer
- by Peter Sarnak PDF
- Bull. Amer. Math. Soc. 40 (2003), 441-478 Request permission
Abstract:
These notes attempt to describe some aspects of the spectral theory of modular surfaces. They are by no means a complete survey.References
- James Arthur, The trace formula and Hecke operators, Number theory, trace formulas and discrete groups (Oslo, 1987) Academic Press, Boston, MA, 1989, pp. 11–27. MR 993309 [Ar]Ar E. Artin, Abh. Math. Sem., Hamburg (1924), 170-175.
- M. V. Berry, Regular and irregular semiclassical wavefunctions, J. Phys. A 10 (1977), no. 12, 2083–2091. MR 489542, DOI 10.1088/0305-4470/10/12/016
- Lipman Bers, Spaces of Riemann surfaces, Proc. Internat. Congress Math. 1958., Cambridge Univ. Press, New York, 1960, pp. 349–361. MR 0124484
- E. Bogomolny and C. Schmit, Semiclassical computations of energy levels, Nonlinearity 6 (1993), no. 4, 523–547. MR 1231772, DOI 10.1088/0951-7715/6/4/002 [Bo]Bo E. Bombieri, Lectures on the zeta function (Italy, 2002). [Boo]Boo A. Booker, “Poles of Artin $L$-functions and the strong Artin Conjecture,” preprint (2002).
- Armand Borel, Automorphic forms on $\textrm {SL}_2(\textbf {R})$, Cambridge Tracts in Mathematics, vol. 130, Cambridge University Press, Cambridge, 1997. MR 1482800, DOI 10.1017/CBO9780511896064 [B-L]B-L J. Bourgain and E. Lindenstrauss, “Entropy of quantum limits,” Comm. Math. Phys. 233 (2003), no. 1, 153–171.
- A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8, DOI 10.1017/S0370164600012281
- Kevin Buzzard, Mark Dickinson, Nick Shepherd-Barron, and Richard Taylor, On icosahedral Artin representations, Duke Math. J. 109 (2001), no. 2, 283–318. MR 1845181, DOI 10.1215/S0012-7094-01-10922-8
- A. O. L. Atkin and B. J. Birch (eds.), Computers in number theory, Academic Press, London-New York, 1971. MR 0314733
- J. W. S. Cassels and A. Fröhlich (eds.), Algebraic number theory, Academic Press, London; Thompson Book Co., Inc., Washington, D.C., 1967. MR 0215665 [Cl]Cl L. Clozel, “Spectral theory of automorphic forms”, Lectures, Park City (2002). [Co-PS-S]Co-PS-S J. Cogdell, I. Piatetsky-Shapiro and P. Sarnak, “Estimates for Hilbert modular $L$-functions and applications” (in preparation). [Cog]Cog J. Cogdell, “On sums of 3 squares” (to appear), J. Théor. Nombres Bordeaux (2003).
- Y. Colin de Verdière, Ergodicité et fonctions propres du laplacien, Comm. Math. Phys. 102 (1985), no. 3, 497–502 (French, with English summary). MR 818831, DOI 10.1007/BF01209296
- Yves Colin de Verdière, Pseudo-laplaciens. II, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 2, 87–113 (French). MR 699488, DOI 10.5802/aif.917
- Harold Davenport, Multiplicative number theory, 2nd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York-Berlin, 1980. Revised by Hugh L. Montgomery. MR 606931, DOI 10.1007/978-1-4757-5927-3 [De]De P. Deligne, Formes modulaires et represéntations $l$-adiques, Lecture Notes in Math., Vol. 179, Springer (1971), 139-172.
- J.-M. Deshouillers and H. Iwaniec, The nonvanishing of Rankin-Selberg zeta-functions at special points, The Selberg trace formula and related topics (Brunswick, Maine, 1984) Contemp. Math., vol. 53, Amer. Math. Soc., Providence, RI, 1986, pp. 51–95. MR 853553, DOI 10.1090/conm/053/853553
- W. Duke, J. B. Friedlander, and H. Iwaniec, Equidistribution of roots of a quadratic congruence to prime moduli, Ann. of Math. (2) 141 (1995), no. 2, 423–441. MR 1324141, DOI 10.2307/2118527
- W. Duke and H. Iwaniec, Estimates for coefficients of $L$-functions. IV, Amer. J. Math. 116 (1994), no. 1, 207–217. MR 1262431, DOI 10.2307/2374986
- William Duke and Rainer Schulze-Pillot, Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids, Invent. Math. 99 (1990), no. 1, 49–57. MR 1029390, DOI 10.1007/BF01234411
- J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975), no. 1, 39–79. MR 405514, DOI 10.1007/BF01405172 [E-F-K-A-M-M]E-F-K-A-M-M B. Eckhardt, S. Fishman, J. Keating, O. Agam, J. Main, K. Muller, Approach to ergodicity in quantum wave functions, Phys. Rev. E, Vol. 52, No. 6 (1995), 5893-5903.
- Ju. V. Egorov, The canonical transformations of pseudodifferential operators, Uspehi Mat. Nauk 24 (1969), no. 5 (149), 235–236 (Russian). MR 0265748 [E-K]E-K M. Einsiedler and A. Katok, “Invariant measures on $G/\Gamma$ for split simple Lie groups $G$”, Comm. Pure Appl. Math., Vol. LVI, no. 8 (2003), 1184-1221.
- Mario Feingold and Asher Peres, Distribution of matrix elements of chaotic systems, Phys. Rev. A (3) 34 (1986), no. 1, 591–595. MR 848319, DOI 10.1103/PhysRevA.34.591
- John B. Friedlander, Bounds for $L$-functions, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 363–373. MR 1403937
- Paul B. Garrett, Decomposition of Eisenstein series: Rankin triple products, Ann. of Math. (2) 125 (1987), no. 2, 209–235. MR 881269, DOI 10.2307/1971310
- Stephen S. Gelbart, Automorphic forms on adèle groups, Annals of Mathematics Studies, No. 83, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1975. MR 0379375, DOI 10.1515/9781400881611
- Stephen Gelbart and Hervé Jacquet, A relation between automorphic representations of $\textrm {GL}(2)$ and $\textrm {GL}(3)$, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 471–542. MR 533066, DOI 10.24033/asens.1355
- Roger Godement and Hervé Jacquet, Zeta functions of simple algebras, Lecture Notes in Mathematics, Vol. 260, Springer-Verlag, Berlin-New York, 1972. MR 0342495, DOI 10.1007/BFb0070263 [G-S]G-S V. Golovshanski and N. Smotrov, preprint, Inst. App. Math. Khabarovsk (1982).
- Gergely Harcos, Uniform approximate functional equation for principal $L$-functions, Int. Math. Res. Not. 18 (2002), 923–932. MR 1902296, DOI 10.1155/S1073792802111184
- Michael Harris and Stephen S. Kudla, The central critical value of a triple product $L$-function, Ann. of Math. (2) 133 (1991), no. 3, 605–672. MR 1109355, DOI 10.2307/2944321 [Ha]Ha H. Hasse, J. reine angew Math. 153 (1924) 113-130. [Hec1]Hec1 E. Hecke, Math. Zeit, Vol. 1 (1918), 357-376. [Hec2]Hec2 E. Hecke, Math. Ann., Vol. 114 (1937), 1-28.
- Dennis A. Hejhal, Eigenvalues of the Laplacian for Hecke triangle groups, Mem. Amer. Math. Soc. 97 (1992), no. 469, vi+165. MR 1106989, DOI 10.1090/memo/0469
- Dennis A. Hejhal, The Selberg trace formula for $\textrm {PSL}(2,R)$. Vol. I, Lecture Notes in Mathematics, Vol. 548, Springer-Verlag, Berlin-New York, 1976. MR 0439755, DOI 10.1007/BFb0079608
- Dennis A. Hejhal, On eigenfunctions of the Laplacian for Hecke triangle groups, Emerging applications of number theory (Minneapolis, MN, 1996) IMA Vol. Math. Appl., vol. 109, Springer, New York, 1999, pp. 291–315. MR 1691537, DOI 10.1007/978-1-4612-1544-8_{1}1
- Dennis A. Hejhal and Barry N. Rackner, On the topography of Maass waveforms for $\textrm {PSL}(2,\textbf {Z})$, Experiment. Math. 1 (1992), no. 4, 275–305. MR 1257286, DOI 10.1080/10586458.1992.10504562
- Eric J. Heller, Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits, Phys. Rev. Lett. 53 (1984), no. 16, 1515–1518. MR 762412, DOI 10.1103/PhysRevLett.53.1515
- M. N. Huxley, Introduction to Kloostermania, Elementary and analytic theory of numbers (Warsaw, 1982) Banach Center Publ., vol. 17, PWN, Warsaw, 1985, pp. 217–306. MR 840479
- Henryk Iwaniec, The spectral growth of automorphic $L$-functions, J. Reine Angew. Math. 428 (1992), 139–159. MR 1166510, DOI 10.1515/crll.1992.428.139
- Henryk Iwaniec, Introduction to the spectral theory of automorphic forms, Biblioteca de la Revista Matemática Iberoamericana. [Library of the Revista Matemática Iberoamericana], Revista Matemática Iberoamericana, Madrid, 1995. MR 1325466
- H. Iwaniec and P. Sarnak, $L^\infty$ norms of eigenfunctions of arithmetic surfaces, Ann. of Math. (2) 141 (1995), no. 2, 301–320. MR 1324136, DOI 10.2307/2118522
- H. Iwaniec and P. Sarnak, Perspectives on the analytic theory of $L$-functions, Geom. Funct. Anal. Special Volume (2000), 705–741. GAFA 2000 (Tel Aviv, 1999). MR 1826269, DOI 10.1007/978-3-0346-0425-3_{6}
- H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic representations. I, Amer. J. Math. 103 (1981), no. 3, 499–558. MR 618323, DOI 10.2307/2374103
- Dmitry Jakobson, Quantum unique ergodicity for Eisenstein series on $\textrm {PSL}_2(\textbf {Z})\backslash \textrm {PSL}_2(\textbf {R})$, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 5, 1477–1504 (English, with English and French summaries). MR 1313792, DOI 10.5802/aif.1442
- Christopher M. Judge, On the existence of Maass cusp forms on hyperbolic surfaces with cone points, J. Amer. Math. Soc. 8 (1995), no. 3, 715–759. MR 1273415, DOI 10.1090/S0894-0347-1995-1273415-6
- A. Katok and R. J. Spatzier, Invariant measures for higher-rank hyperbolic abelian actions, Ergodic Theory Dynam. Systems 16 (1996), no. 4, 751–778. MR 1406432, DOI 10.1017/S0143385700009081
- Nicholas M. Katz and Peter Sarnak, Zeroes of zeta functions and symmetry, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 1, 1–26. MR 1640151, DOI 10.1090/S0273-0979-99-00766-1
- J. P. Keating and N. C. Snaith, Random matrix theory and $L$-functions at $s=1/2$, Comm. Math. Phys. 214 (2000), no. 1, 91–110. MR 1794267, DOI 10.1007/s002200000262 [K]K H. Kim, “Functoriality of the exterior square of $GL_4$ and the symmetric fourth power of $GL_2$”, JAMS, Vol. 16, 1 (2003), 139-183. [Ki-Sa]Ki-Sa H. Kim and P. Sarnak, Appendix to [K], JAMS 16 (2003), no. 1, 139–183 (electronic). [K-S1]K-S1 H. Kim and F. Shahidi, Functorial products for $\textrm {GL}_ 2\times \textrm {GL}_ 3$ and the symmetric cube for $\textrm {GL}_ 2$, Annals of Math. 155 (2002), 837-893.
- Henry H. Kim and Freydoon Shahidi, Cuspidality of symmetric powers with applications, Duke Math. J. 112 (2002), no. 1, 177–197. MR 1890650, DOI 10.1215/S0012-9074-02-11215-0 [Kl]Kl F. Klein, “Lectures on the Icosahedron”, Paul French Frübner Co. (1913). [Kne]Kne M. Kneser, “Quadratische formen”, Lecture Notes, Göttingen (1974).
- N. V. Kuznecov, The Petersson conjecture for cusp forms of weight zero and the Linnik conjecture. Sums of Kloosterman sums, Mat. Sb. (N.S.) 111(153) (1980), no. 3, 334–383, 479 (Russian). MR 568983
- Serge Lang, $\textrm {SL}_{2}(\textbf {R})$, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. MR 0430163
- Serge Lang, Algebraic number theory, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0282947
- Robert P. Langlands, Base change for $\textrm {GL}(2)$, Annals of Mathematics Studies, No. 96, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 574808
- R. P. Langlands, Problems in the theory of automorphic forms, Lectures in modern analysis and applications, III, Lecture Notes in Math., Vol. 170, Springer, Berlin, 1970, pp. 18–61. MR 0302614
- Robert P. Langlands, On the functional equations satisfied by Eisenstein series, Lecture Notes in Mathematics, Vol. 544, Springer-Verlag, Berlin-New York, 1976. MR 0579181, DOI 10.1007/BFb0079929
- R. P. Langlands, Eisenstein series, the trace formula, and the modern theory of automorphic forms, Number theory, trace formulas and discrete groups (Oslo, 1987) Academic Press, Boston, MA, 1989, pp. 125–155. MR 993313 [L-R]L-R E. Lapid and S. Rallis, Annals of Math. 157 (2003), 1-26.
- Peter D. Lax, The Radon transform and translation representation, J. Evol. Equ. 1 (2001), no. 3, 311–323. Dedicated to Ralph S. Phillips. MR 1861225, DOI 10.1007/PL00001373
- Peter D. Lax and Ralph S. Phillips, Scattering theory for automorphic functions, Annals of Mathematics Studies, No. 87, Princeton University Press, Princeton, N.J., 1976. MR 0562288
- Vladimir F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 24, Springer-Verlag, Berlin, 1993. With an addendum by A. I. Shnirel′man. MR 1239173, DOI 10.1007/978-3-642-76247-5 [Li1]Li1 E. Lindenstrauss, “Invariant measures and arithmetic quantum unique ergodicity", preprint (2003).
- Elon Lindenstrauss, On quantum unique ergodicity for $\Gamma \backslash \Bbb H\times \Bbb H$, Internat. Math. Res. Notices 17 (2001), 913–933. MR 1859345, DOI 10.1155/S1073792801000459
- A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988), no. 3, 261–277. MR 963118, DOI 10.1007/BF02126799
- Wenzhi Luo, Nonvanishing of $L$-values and the Weyl law, Ann. of Math. (2) 154 (2001), no. 2, 477–502. MR 1865978, DOI 10.2307/3062104
- W. Luo, Z. Rudnick, and P. Sarnak, On Selberg’s eigenvalue conjecture, Geom. Funct. Anal. 5 (1995), no. 2, 387–401. MR 1334872, DOI 10.1007/BF01895672
- Wen Zhi Luo and Peter Sarnak, Quantum ergodicity of eigenfunctions on $\textrm {PSL}_2(\mathbf Z)\backslash \mathbf H^2$, Inst. Hautes Études Sci. Publ. Math. 81 (1995), 207–237. MR 1361757 [L-S2]L-S2 W. Luo and P. Sarnak, “Quantum ergodicity of eigenfunctions on $SL_2 ( \mathbb {Z} ) \backslash \mathbb {H} \; \textrm {II}$” (in preparation).
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- G. A. Margulis, Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators, Problemy Peredachi Informatsii 24 (1988), no. 1, 51–60 (Russian); English transl., Problems Inform. Transmission 24 (1988), no. 1, 39–46. MR 939574
- H. P. McKean, An upper bound to the spectrum of $\Delta$ on a manifold of negative curvature, J. Differential Geometry 4 (1970), 359–366. MR 266100, DOI 10.4310/jdg/1214429509
- H. P. McKean Jr. and I. M. Singer, Curvature and the eigenvalues of the Laplacian, J. Differential Geometry 1 (1967), no. 1, 43–69. MR 217739
- Madan Lal Mehta, Random matrices, 2nd ed., Academic Press, Inc., Boston, MA, 1991. MR 1083764
- Stephen D. Miller, On the existence and temperedness of cusp forms for $\textrm {SL}_3({\Bbb Z})$, J. Reine Angew. Math. 533 (2001), 127–169. MR 1823867, DOI 10.1515/crll.2001.029 [M-S]M-S S.D. Miller and W. Schmid, “Automorphic Distributions, $L$-functions and Voronoi Summation for $GL(3)$” (2002), preprint. [Mu]Mu W. Müller (2002) (in preparation).
- Yiannis N. Petridis, Spectral data for finite volume hyperbolic surfaces at the bottom of the continuous spectrum, J. Funct. Anal. 124 (1994), no. 1, 61–94. MR 1284603, DOI 10.1006/jfan.1994.1098
- R. S. Phillips and P. Sarnak, On cusp forms for co-finite subgroups of $\textrm {PSL}(2,\textbf {R})$, Invent. Math. 80 (1985), no. 2, 339–364. MR 788414, DOI 10.1007/BF01388610
- R. S. Phillips and P. Sarnak, The Weyl theorem and the deformation of discrete groups, Comm. Pure Appl. Math. 38 (1985), no. 6, 853–866. MR 812352, DOI 10.1002/cpa.3160380614
- R. Phillips and P. Sarnak, Perturbation theory for the Laplacian on automorphic functions, J. Amer. Math. Soc. 5 (1992), no. 1, 1–32. MR 1127079, DOI 10.1090/S0894-0347-1992-1127079-X
- I. Piatetski-Shapiro and Stephen Rallis, Rankin triple $L$ functions, Compositio Math. 64 (1987), no. 1, 31–115. MR 911357
- M. Ratner, The central limit theorem for geodesic flows on $n$-dimensional manifolds of negative curvature, Israel J. Math. 16 (1973), 181–197. MR 333121, DOI 10.1007/BF02757869
- Zeév Rudnick and Peter Sarnak, The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. Math. Phys. 161 (1994), no. 1, 195–213. MR 1266075, DOI 10.1007/BF02099418
- Daniel J. Rudolph, $\times 2$ and $\times 3$ invariant measures and entropy, Ergodic Theory Dynam. Systems 10 (1990), no. 2, 395–406. MR 1062766, DOI 10.1017/S0143385700005629 [Sa1]Sa1 P. Sarnak, “A panorama of number theory”, ed. Wustholz, Cambridge (2002), 121-127.
- Peter Sarnak, On cusp forms, The Selberg trace formula and related topics (Brunswick, Maine, 1984) Contemp. Math., vol. 53, Amer. Math. Soc., Providence, RI, 1986, pp. 393–407. MR 853570, DOI 10.1090/conm/053/853570 [Sa3]Sa3 P. Sarnak, Letter to Z. Rudnick, August, 2002.
- Peter Sarnak, Arithmetic quantum chaos, The Schur lectures (1992) (Tel Aviv), Israel Math. Conf. Proc., vol. 8, Bar-Ilan Univ., Ramat Gan, 1995, pp. 183–236. MR 1321639
- Peter Sarnak, Estimates for Rankin-Selberg $L$-functions and quantum unique ergodicity, J. Funct. Anal. 184 (2001), no. 2, 419–453. MR 1851004, DOI 10.1006/jfan.2001.3783 [Sa-Wa]Sa-Wa P. Sarnak and T. Watson, “$L^4$ norms of eigenfunctions on the modular surface" (in preparation).
- Rainer Schulze-Pillot, Exceptional integers for genera of integral ternary positive definite quadratic forms, Duke Math. J. 102 (2000), no. 2, 351–357. MR 1749442, DOI 10.1215/S0012-7094-00-10227-X [Sel3]Sel3 A. Selberg, Collected Works, Springer (1988), 341-355.
- Atle Selberg, Collected papers. Vol. I, Springer-Verlag, Berlin, 1989. With a foreword by K. Chandrasekharan. MR 1117906
- Atle Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I., 1965, pp. 1–15. MR 0182610
- J.-P. Serre, Modular forms of weight one and Galois representations, Algebraic number fields: $L$-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London, 1977, pp. 193–268. MR 0450201
- F. Shahidi, Automorphic $L$-functions: a survey, Automorphic forms, Shimura varieties, and $L$-functions, Vol. I (Ann Arbor, MI, 1988) Perspect. Math., vol. 10, Academic Press, Boston, MA, 1990, pp. 415–437. MR 1044824
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, No. 1, Iwanami Shoten Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. Publications of the Mathematical Society of Japan, No. 11. MR 0314766
- Goro Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. (3) 31 (1975), no. 1, 79–98. MR 382176, DOI 10.1112/plms/s3-31.1.79 [Shn]Shn A. Shnirelman, Uspekhi Mat. Nauk 29/6 (1974), 181-182.
- Barry Simon, Resonances in $n$-body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory, Ann. of Math. (2) 97 (1973), 247–274. MR 353896, DOI 10.2307/1970847
- Christopher D. Sogge, Concerning the $L^p$ norm of spectral clusters for second-order elliptic operators on compact manifolds, J. Funct. Anal. 77 (1988), no. 1, 123–138. MR 930395, DOI 10.1016/0022-1236(88)90081-X [Sp]Sp F. Spinu, Thesis, Princeton University (2003).
- Robert A. Rankin (ed.), Modular forms, Ellis Horwood Series in Mathematics and its Applications: Statistics and Operational Research, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1984. Papers from the symposium held at the University of Durham, Durham, June 30–July 10, 1983. MR 803359 [St]St G. Steil, Diplom. Math. Univ. Hamburg (1992).
- E. M. Stein, Oscillatory integrals in Fourier analysis, Beijing lectures in harmonic analysis (Beijing, 1984) Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 307–355. MR 864375 [Str]Str A. Strombergsson, private communication (2003).
- Kisao Takeuchi, A characterization of arithmetic Fuchsian groups, J. Math. Soc. Japan 27 (1975), no. 4, 600–612. MR 398991, DOI 10.2969/jmsj/02740600
- Árpád Tóth, Roots of quadratic congruences, Internat. Math. Res. Notices 14 (2000), 719–739. MR 1776618, DOI 10.1155/S1073792800000404
- Jerrold Tunnell, Artin’s conjecture for representations of octahedral type, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 2, 173–175. MR 621884, DOI 10.1090/S0273-0979-1981-14936-3
- A. B. Venkov, Spectral theory of automorphic functions, Trudy Mat. Inst. Steklov. 153 (1981), 172 (Russian). MR 665585 [Wa]Wa T. Watson, Thesis, Princeton University (2002). [Wei]Wei A. Weil, Automorphic forms and Dirichlet series, Springer Lect. Notes, Vol. 189 (1971).
- Michael Wolf, Infinite energy harmonic maps and degeneration of hyperbolic surfaces in moduli space, J. Differential Geom. 33 (1991), no. 2, 487–539. MR 1094467
- Scott A. Wolpert, Spectral limits for hyperbolic surfaces. I, II, Invent. Math. 108 (1992), no. 1, 67–89, 91–129. MR 1156387, DOI 10.1007/BF02100600
- Scott A. Wolpert, Disappearance of cusp forms in special families, Ann. of Math. (2) 139 (1994), no. 2, 239–291. MR 1274093, DOI 10.2307/2946582
- Steven Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55 (1987), no. 4, 919–941. MR 916129, DOI 10.1215/S0012-7094-87-05546-3
Additional Information
- Peter Sarnak
- Affiliation: Courant Institute of Math. Sciences; and Department of Mathematics, Princeton University, Princeton, NJ 05840
- MR Author ID: 154725
- Email: sarnak@Math.Princeton.EDU
- Received by editor(s): March 6, 2003
- Published electronically: July 17, 2003
- Additional Notes: This paper is based on notes for the Colloquium Lecture presented at the Joint Mathematics Meetings in Baltimore in January 2003
- © Copyright 2003 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 40 (2003), 441-478
- MSC (2000): Primary 11F03, 11N75, 11R42, 35P30
- DOI: https://doi.org/10.1090/S0273-0979-03-00991-1
- MathSciNet review: 1997348