Stable ergodicity
HTML articles powered by AMS MathViewer
- by Charles Pugh, Michael Shub and an appendix by Alexander Starkov PDF
- Bull. Amer. Math. Soc. 41 (2004), 1-41 Request permission
References
- Christian Bonatti and Marcelo Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math. 115 (2000), 157–193. MR 1749677, DOI 10.1007/BF02810585
- D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. 90 (1967), 209 (Russian). MR 0224110
- D. V. Anosov and Ja. G. Sinaĭ, Certain smooth ergodic systems, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 107–172 (Russian). MR 0224771 [ArbM]ArMa Arbieto, A. and C. Mateus, $C^1$ Robust Transitivity, preprint. [ArnA]ArAv Arnold, V.I. and A. Avez, Théorie Ergodique des Systèmes Dynamiques, Gautier-Villars, Paris, 1967.
- L. Auslander and L. W. Green, $G$-induced flows, Amer. J. Math. 88 (1966), 43–60. MR 199308, DOI 10.2307/2373046
- M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, and J.-P. Schreiber, Pisot and Salem numbers, Birkhäuser Verlag, Basel, 1992. With a preface by David W. Boyd. MR 1187044, DOI 10.1007/978-3-0348-8632-1 [BocFP]BoFaPu Bochi, J., B. Fayad and E. Pujals, Stable ergodicity implies Bernoulli, preprint. [BonDU]BoDiUr Bonatti, C., L. Díaz and R. Ures, Minimality of strong stable and unstable foliations for partially hyperbolic diffeomorphisms, preprint (2001). [BonMVW]BoMaViWi Bonatti, C., C. Matheus, M. Viana and A. Wilkinson, Abundance of stable ergodicity, preprint.
- Christian Bonatti and Marcelo Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math. 115 (2000), 157–193. MR 1749677, DOI 10.1007/BF02810585 [BonW]BoWi Bonatti, C. and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds, preprint.
- Rufus Bowen, A horseshoe with positive measure, Invent. Math. 29 (1975), no. 3, 203–204. MR 380890, DOI 10.1007/BF01389849
- Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. MR 0442989, DOI 10.1007/BFb0081279
- Rufus Bowen and Brian Marcus, Unique ergodicity for horocycle foliations, Israel J. Math. 26 (1977), no. 1, 43–67. MR 451307, DOI 10.1007/BF03007655
- Rufus Bowen and David Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), no. 3, 181–202. MR 380889, DOI 10.1007/BF01389848
- David W. Boyd, Small Salem numbers, Duke Math. J. 44 (1977), no. 2, 315–328. MR 453692
- Jonathan Brezin and Michael Shub, Stable ergodicity in homogeneous spaces, Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), no. 2, 197–210. MR 1479501, DOI 10.1007/BF01233391
- M. I. Brin, Topological transitivity of a certain class of dynamical systems, and flows of frames on manifolds of negative curvature, Funkcional. Anal. i Priložen. 9 (1975), no. 1, 9–19 (Russian). MR 0370660
- M. I. Brin, The topology of group extensions of $C$-systems, Mat. Zametki 18 (1975), no. 3, 453–465 (Russian). MR 394764 [Br3]Brin5 Brin, M., On dynamical coherence, Ergodic Th. and Dynamical Sys. 23 (2003), 395-401. [BriBI]BriBuIv Brin, M., D. Burago and S. Ivanov, Partial hyperbolicity in dimension 3, in preparation.
- M. I. Brin and Ja. B. Pesin, Partially hyperbolic dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 170–212 (Russian). MR 0343316 [BriS]BrSt Brin, M. and G. Stuck, Introduction to dynamical systems, Cambridge University Press, 2002. [BuDP] BuDoPe Burns, K., D. Dolgopyat and Ya. Pesin, Partial hyperbolicity, Lyapunov exponents and stable ergodicity, preprint.
- Keith Burns, Charles Pugh, Michael Shub, and Amie Wilkinson, Recent results about stable ergodicity, Smooth ergodic theory and its applications (Seattle, WA, 1999) Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc., Providence, RI, 2001, pp. 327–366. MR 1858538, DOI 10.1090/pspum/069/1858538
- Keith Burns, Charles Pugh, and Amie Wilkinson, Stable ergodicity and Anosov flows, Topology 39 (2000), no. 1, 149–159. MR 1710997, DOI 10.1016/S0040-9383(98)00064-0
- Keith Burns and Amie Wilkinson, Stable ergodicity of skew products, Ann. Sci. École Norm. Sup. (4) 32 (1999), no. 6, 859–889 (English, with English and French summaries). MR 1717580, DOI 10.1016/S0012-9593(00)87721-6 [BuW2]BuWi Burns, K. and A. Wilkinson, Better center bunching, in preparation.
- Chong Qing Cheng and Yi Sui Sun, Existence of invariant tori in three-dimensional measure-preserving mappings, Celestial Mech. Dynam. Astronom. 47 (1989/90), no. 3, 275–292. MR 1056793, DOI 10.1007/BF00053456 [Dí]Di Díaz, L.,The end of domination, Abstracts, New Directions in Dynamical Systems, Kyoto, Japan, August 5-15, 2002.
- Anatole Katok, Rafael de la Llave, Yakov Pesin, and Howard Weiss (eds.), Smooth ergodic theory and its applications, Proceedings of Symposia in Pure Mathematics, vol. 69, American Mathematical Society, Providence, RI, 2001. MR 1858533, DOI 10.1090/pspum/069
- Dmitry Dolgopyat, On dynamics of mostly contracting diffeomorphisms, Comm. Math. Phys. 213 (2000), no. 1, 181–201. MR 1782146, DOI 10.1007/s002200000238 [Do2]Dolg2 Dolgopyat, D., On dynamics of partially hyperbolic systems on three manifolds, preprint (1999). [Do3]Dolg4 Dolgopyat, D., On differentiability of SRB states for partially hyperbolic systems, preprint.
- Dmitry Dolgopyat and Yakov Pesin, Every compact manifold carries a completely hyperbolic diffeomorphism, Ergodic Theory Dynam. Systems 22 (2002), no. 2, 409–435. MR 1898798, DOI 10.1017/S0143385702000202 [DoW]DoWi Dolgopyat, D. and A. Wilkinson, Stable accessibility is $C^1$ dense, preprint.
- K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284 [FiN1]FN1 Field, M. and M. Nicol, Ergodic theory of equivariant diffeomorphisms I: Markov partitions, preprint (1999). [FiN2]FN2 Field, M. and M. Nicol, Ergodic theory of equivariant diffeomorphisms II: stable ergodicity, preprint (1999).
- Michael Field and William Parry, Stable ergodicity of skew extensions by compact Lie groups, Topology 38 (1999), no. 1, 167–187. MR 1644099, DOI 10.1016/S0040-9383(98)00008-1 [FiMT]FMTField, M., I. Melbourne and A. Torok, Stable ergodicity for smooth compact Lie group extensions of hyperbolic basic sets, and stable mixing for hyperbolic flows, preprint.
- Giovanni Gallavotti, Statistical mechanics, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1999. A short treatise. MR 1707309, DOI 10.1007/978-3-662-03952-6
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Matthew Grayson, Charles Pugh, and Michael Shub, Stably ergodic diffeomorphisms, Ann. of Math. (2) 140 (1994), no. 2, 295–329. MR 1298715, DOI 10.2307/2118602
- Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53–73. MR 623534, DOI 10.1007/BF02698687
- M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Bull. Amer. Math. Soc. 76 (1970), 1015–1019. MR 292101, DOI 10.1090/S0002-9904-1970-12537-X
- M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR 0501173, DOI 10.1007/BFb0092042
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- A. Katok and A. Kononenko, Cocycles’ stability for partially hyperbolic systems, Math. Res. Lett. 3 (1996), no. 2, 191–210. MR 1386840, DOI 10.4310/MRL.1996.v3.n2.a6
- Shan Tao Liao, On the stability conjecture, Chinese Ann. Math. 1 (1980), no. 1, 9–30 (English, with Chinese summary). MR 591229
- D. A. Lind, Dynamical properties of quasihyperbolic toral automorphisms, Ergodic Theory Dynam. Systems 2 (1982), no. 1, 49–68. MR 684244, DOI 10.1017/s0143385700009573
- Ricardo Mañé, Persitent manifolds are normally hyperbolic, Bull. Amer. Math. Soc. 80 (1974), 90–91. MR 339283, DOI 10.1090/S0002-9904-1974-13366-5
- Ricardo Mañé, Oseledec’s theorem from the generic viewpoint, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 1269–1276. MR 804776
- Ricardo Mañé, A proof of the $C^1$ stability conjecture, Inst. Hautes Études Sci. Publ. Math. 66 (1988), 161–210. MR 932138 [Ma4]ManeletMañé, R., private communication.
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- John Milnor, Fubini foiled: Katok’s paradoxical example in measure theory, Math. Intelligencer 19 (1997), no. 2, 30–32. MR 1457445, DOI 10.1007/BF03024428
- Calvin C. Moore, Ergodicity of flows on homogeneous spaces, Amer. J. Math. 88 (1966), 154–178. MR 193188, DOI 10.2307/2373052 [Nik]Nikodym Nikodym, O., Sur la mesure des ensembles plans dont tous les points sont rectilinearment accessibles, Fund. Math. 10, 1927, 116-168. [NiT]NT Niţică, V. and A. Török, An open dense set of stably ergodic diffeomorphisms in a neighborhood of a non-ergodic one, preprint (1998).
- William Parry, Dynamical systems on nilmanifolds, Bull. London Math. Soc. 2 (1970), 37–40. MR 267558, DOI 10.1112/blms/2.1.37
- W. Parry and M. Pollicott, Stability of mixing for toral extensions of hyperbolic systems, Tr. Mat. Inst. Steklova 216 (1997), no. Din. Sist. i Smezhnye Vopr., 354–363; English transl., Proc. Steklov Inst. Math. 1(216) (1997), 350–359. MR 1632190
- Ja. B. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Uspehi Mat. Nauk 32 (1977), no. 4 (196), 55–112, 287 (Russian). MR 0466791
- Ya. B. Pesin and Ya. G. Sinaĭ, Gibbs measures for partially hyperbolic attractors, Ergodic Theory Dynam. Systems 2 (1982), no. 3-4, 417–438 (1983). MR 721733, DOI 10.1017/S014338570000170X
- V. A. Pliss, On a conjecture of Smale, Differencial′nye Uravnenija 8 (1972), 268–282 (Russian). MR 0299909
- Charles Pugh and Michael Shub, Ergodicity of Anosov actions, Invent. Math. 15 (1972), 1–23. MR 295390, DOI 10.1007/BF01418639
- Charles Pugh and Michael Shub, Stably ergodic dynamical systems and partial hyperbolicity, J. Complexity 13 (1997), no. 1, 125–179. MR 1449765, DOI 10.1006/jcom.1997.0437
- Charles Pugh and Michael Shub, Stable ergodicity and julienne quasi-conformality, J. Eur. Math. Soc. (JEMS) 2 (2000), no. 1, 1–52. MR 1750453, DOI 10.1007/s100970050013 [PSS]PSS Pugh, C., M. Shub and A. Starkov, Erratum to Stable ergodicity and julienne quasi-conformality, J. Eur. Math. Soc. 2, 1-52, preprint. [Puj]Puj Pujals, E., Tangent bundles dynamics and its consequences in Li, Ta Tsien (ed.) et al., Proceedings of the International Congress of Mathematicians, ICM 2002, Beijing, China, August 20-28, 2002. Vol. III: Invited lectures. Beijing: Higher Education Press. 327-338 (2002).
- Clark Robinson and Lai Sang Young, Nonabsolutely continuous foliations for an Anosov diffeomorphism, Invent. Math. 61 (1980), no. 2, 159–176. MR 590160, DOI 10.1007/BF01390119 [R-H] RH Rodriguez Hertz, F., Stable Ergodicity of Certain Linear Automorphisms of the Torus, to appear.
- David Ruelle, A measure associated with axiom-A attractors, Amer. J. Math. 98 (1976), no. 3, 619–654. MR 415683, DOI 10.2307/2373810
- David Ruelle and Dennis Sullivan, Currents, flows and diffeomorphisms, Topology 14 (1975), no. 4, 319–327. MR 415679, DOI 10.1016/0040-9383(75)90016-6
- David Ruelle and Amie Wilkinson, Absolutely singular dynamical foliations, Comm. Math. Phys. 219 (2001), no. 3, 481–487. MR 1838747, DOI 10.1007/s002200100420
- Michael Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969), 175–199. MR 240824, DOI 10.2307/2373276
- Michael Shub and Alphonse Thomas Vasquez, Some linearly induced Morse-Smale systems, the QR algorithm and the Toda lattice, The legacy of Sonya Kovalevskaya (Cambridge, Mass., and Amherst, Mass., 1985) Contemp. Math., vol. 64, Amer. Math. Soc., Providence, RI, 1987, pp. 181–194. MR 881462, DOI 10.1090/conm/064/881462
- Michael Shub and Amie Wilkinson, Stably ergodic approximation: two examples, Ergodic Theory Dynam. Systems 20 (2000), no. 3, 875–893. MR 1764933, DOI 10.1017/S014338570000047X
- Michael Shub and Amie Wilkinson, Pathological foliations and removable zero exponents, Invent. Math. 139 (2000), no. 3, 495–508. MR 1738057, DOI 10.1007/s002229900035
- Ja. G. Sinaĭ, Gibbs measures in ergodic theory, Uspehi Mat. Nauk 27 (1972), no. 4(166), 21–64 (Russian). MR 0399421
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- Steve Smale, The mathematics of time, Springer-Verlag, New York-Berlin, 1980. Essays on dynamical systems, economic processes, and related topics. MR 607330, DOI 10.1007/978-1-4613-8101-3
- Steve Smale, Mathematical problems for the next century, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 271–294. MR 1754783
- A. N. Starkov, Dinamicheskie sistemy na odnorodnykh prostranstvakh, Izdatel′stvo FAZIS, Moscow, 1999 (Russian, with Russian summary). MR 1823790 [St2]Star3 Starkov, A.N., Stable ergodicity among left translations, Appendix to this article. [Ta]Ta Tahzibi, A., Stably ergodic diffeomorphisms which are not partially hyperbolic, to appear.
- C. P. Walkden, Stable ergodic properties of cocycles over hyperbolic attractors, Comm. Math. Phys. 205 (1999), no. 2, 263–281. MR 1712607, DOI 10.1007/s002200050676
- Peter Walters, Topological conjugacy of affine transformations of tori, Trans. Amer. Math. Soc. 131 (1968), 40–50. MR 224737, DOI 10.1090/S0002-9947-1968-0224737-9 [Wi1]Wi2 Wilkinson, A., Stable ergodicity of the time one map of a geodesic flow, Ph.D. Thesis, University of California at Berkeley (1995).
- Amie Wilkinson, Stable ergodicity of the time-one map of a geodesic flow, Ergodic Theory Dynam. Systems 18 (1998), no. 6, 1545–1587. MR 1658611, DOI 10.1017/S0143385798117984
- Jean-Christophe Yoccoz, Travaux de Herman sur les tores invariants, Astérisque 206 (1992), Exp. No. 754, 4, 311–344 (French, with French summary). Séminaire Bourbaki, Vol. 1991/92. MR 1206072
- Lai-Sang Young, What are SRB measures, and which dynamical systems have them?, J. Statist. Phys. 108 (2002), no. 5-6, 733–754. Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays. MR 1933431, DOI 10.1023/A:1019762724717
- Jonathan Brezin and Michael Shub, Stable ergodicity in homogeneous spaces, Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), no. 2, 197–210. MR 1479501, DOI 10.1007/BF01233391
- S. G. Dani, Kolmogorov automorphisms on homogeneous spaces, Amer. J. Math. 98 (1976), no. 1, 119–163. MR 419728, DOI 10.2307/2373618
- S. G. Dani, Spectrum of an affine transformation, Duke Math. J. 44 (1977), no. 1, 129–155. MR 444835
- A. N. Starkov, On a criterion for the ergodicity of $G$-induced flows, Uspekhi Mat. Nauk 42 (1987), no. 3(255), 197–198 (Russian). MR 896893
- Dave Witte, Zero-entropy affine maps on homogeneous spaces, Amer. J. Math. 109 (1987), no. 5, 927–961. MR 910358, DOI 10.2307/2374495
Additional Information
- Charles Pugh
- Affiliation: (C. Pugh) Mathematics Department, University of California, Berkeley, California 94720
- Email: pugh@math.berkeley.edu
- Michael Shub
- Affiliation: (M. Shub) Department of Mathematics, University of Toronto, 100 St. George St., Toronto, Ontario, M5S 3G3, Canada; (summers) IBM T. J. Watson Research Center, Yorktown Heights, New York 10598-0218
- Email: shub@math.toronto.edu, mshub@us.ibm.com
- an appendix by Alexander Starkov
- Affiliation: (A. Starkov) All-Russian Institute of Electrotechnics, Istra, Moscow Region, Russia, 143500
- Email: RDIEalex@istra.ru
- Received by editor(s): July 2, 2003
- Published electronically: November 4, 2003
- Additional Notes: This paper is the written version of an hour invited address given by Charles Pugh at the annual AMS meeting in January 2003 at Baltimore. Pugh was supported in part by IBM, and Shub was supported in part by NSF Grant #DMS-9988809.
- © Copyright 2003 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 41 (2004), 1-41
- MSC (2000): Primary 37C40
- DOI: https://doi.org/10.1090/S0273-0979-03-00998-4
- MathSciNet review: 2015448