Book Review
The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.
Full text of review: PDF This review is available free of charge.
Book Information:
Author: Michael Rosen
Title: Number theory in function fields
Additional book information: Springer-Verlag, New York, 2002, xii+358 pp., ISBN 0-387-95335-3, $49.95$
- Greg W. Anderson, $t$-motives, Duke Math. J. 53 (1986), no. 2, 457–502. MR 850546, DOI https://doi.org/10.1215/S0012-7094-86-05328-7 G. ANDERSON, W. D. BROWNAWELL, M. PAPANIKOLAS: Determination of the algebraic relations among special
- E. Artin and J. Tate, Class field theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0223335 E. ARTIN, G. WHAPLES: Axiomatic characterization of fields by the product formula for valuations, Bull. Amer. Math. Soc. 51 (1945) 469-492. MR 7:111f
- Gebhard Böckle, Global $L$-functions over function fields, Math. Ann. 323 (2002), no. 4, 737–795. MR 1924278, DOI https://doi.org/10.1007/s002080200325 G. B¨OCKLE: An Eichler-Shimura isomorphism over function fields between Drinfeld modular forms and cohomology classes of crystals, Lecture Notes in Math. (to appear) (preprint, available at
- Leo Corry, Modern algebra and the rise of mathematical structures, Science Networks. Historical Studies, vol. 17, Birkhäuser Verlag, Basel, 1996. MR 1391720 R. DEDEKIND: Abriss einer Theorie höheren Congruenzen in Bezug auf einen reelen Rrimzahl-Modulus, J. Reine Angew. Math. 54 (1857) 1-26. R. DEDEKIND, H. WEBER: Theorie der algebraischen Funktionen einer Verändlichen, J. Reine Angew. Math 92 (1882) 181-290.
- Jean Dieudonné, History of algebraic geometry, Wadsworth Mathematics Series, Wadsworth International Group, Belmont, CA, 1985. An outline of the history and development of algebraic geometry; Translated from the French by Judith D. Sally. MR 780183
- V. G. Drinfel′d, Elliptic modules, Mat. Sb. (N.S.) 94(136) (1974), 594–627, 656 (Russian). MR 0384707
- V. G. Drinfel′d, Elliptic modules. II, Mat. Sb. (N.S.) 102(144) (1977), no. 2, 182–194, 325 (Russian). MR 0439758
- David Goss, The algebraist’s upper half-plane, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 3, 391–415. MR 561525, DOI https://doi.org/10.1090/S0273-0979-1980-14751-5 D. GOSS: What is a shtuka? Notices of the Amer. Math. Soc. Vol. 50 No. 1 (2003) 36-37. D. GOSS: The impact of the infinite primes on the Riemann hypothesis for characteristic
- D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77–91. MR 330106, DOI https://doi.org/10.1090/S0002-9947-1974-0330106-6
- Nicholas M. Katz and Peter Sarnak, Zeroes of zeta functions and symmetry, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 1, 1–26. MR 1640151, DOI https://doi.org/10.1090/S0273-0979-99-00766-1
- Laurent Lafforgue, Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math. 147 (2002), no. 1, 1–241 (French, with English and French summaries). MR 1875184, DOI https://doi.org/10.1007/s002220100174
- Jürgen Neukirch, Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher; With a foreword by G. Harder. MR 1697859 B. RIEMANN: Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsberichte der Berliner Akademie (1859); Gesammelte Werke, Teubner, Leipzig (1892).
- Peter Roquette, Class field theory in characteristic $p$, its origin and development, Class field theory—its centenary and prospect (Tokyo, 1998) Adv. Stud. Pure Math., vol. 30, Math. Soc. Japan, Tokyo, 2001, pp. 549–631. MR 1846477, DOI https://doi.org/10.2969/aspm/03010549
- Dinesh S. Thakur, Gamma functions for function fields and Drinfel′d modules, Ann. of Math. (2) 134 (1991), no. 1, 25–64. MR 1114607, DOI https://doi.org/10.2307/2944332
- B. L. van der Waerden, A history of algebra, Springer-Verlag, Berlin, 1985. From al-Khwārizmī to Emmy Noether. MR 803326
- Daqing Wan, On the Riemann hypothesis for the characteristic $p$ zeta function, J. Number Theory 58 (1996), no. 1, 196–212. MR 1387735, DOI https://doi.org/10.1006/jnth.1996.0074 A. WEIL: Variétés Abéliennes et Courbes Algébriques, Hermann (1971). MR 10:621d

http://www.math.ethz.ch/~boeckle/
).
L. CARLITZ: On certain functions connected with polynomials in a Galois field, Duke Math. J. 1 (1935) 137-168.


Review Information:
Reviewer: David Goss
Affiliation: The Ohio State University
Email: goss@math.ohio-state.edu
Journal: Bull. Amer. Math. Soc. 41 (2004), 127-133
Published electronically: October 29, 2003
Review copyright: © Copyright 2003 American Mathematical Society