Skip to Main Content

Bulletin of the American Mathematical Society

Published by the American Mathematical Society, the Bulletin of the American Mathematical Society (BULL) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.47.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Michael Rosen
Title: Number theory in function fields
Additional book information: Springer-Verlag, New York, 2002, xii+358 pp., ISBN 0-387-95335-3, $49.95$

References [Enhancements On Off] (What's this?)

G. ANDERSON: $t$-motives, Duke Math. J. 53 (1986) 457-502. MR 0850546
G. ANDERSON, W. D. BROWNAWELL, M. PAPANIKOLAS: Determination of the algebraic relations among special $\Gamma$-values in positive characteristic, Ann. Math. (to appear).
E. ARTIN: Quadratische Körper im Gebiete der höheren Kongruenzen I, II, Math. Z. 19 (1924) 153-246 (= Coll. Papers, 1-94).
E. ARTIN, J. TATE: Class Field Theory, Benjamin, New York-Amsterdam (1968). MR 0223335
E. ARTIN, G. WHAPLES: Axiomatic characterization of fields by the product formula for valuations, Bull. Amer. Math. Soc. 51 (1945) 469-492. MR 7:111f
G. B¨OCKLE: Global $L$-functions over function fields, Math. Ann. 323 (2002) 737-795. MR 1924278
G. B¨OCKLE: An Eichler-Shimura isomorphism over function fields between Drinfeld modular forms and cohomology classes of crystals, Lecture Notes in Math. (to appear) (preprint, available at
L. CARLITZ: On certain functions connected with polynomials in a Galois field, Duke Math. J. 1 (1935) 137-168.
L. CORRY: Modern Algebra and the Rise of Mathematical Structures, Birkhäuser, Basel (1996). MR 1391720
R. DEDEKIND: Abriss einer Theorie höheren Congruenzen in Bezug auf einen reelen Rrimzahl-Modulus, J. Reine Angew. Math. 54 (1857) 1-26.
R. DEDEKIND, H. WEBER: Theorie der algebraischen Funktionen einer Verändlichen, J. Reine Angew. Math 92 (1882) 181-290.
J. DIEUDONNÉ: History of Algebraic Geometry, Wadsworth, Monterey (1985). MR 0780183
V.G. DRINFELD: Elliptic modules, Math. Sbornik 94 (1974) 594-627; English transl.: Math. U.S.S.R. Sbornik 23 (1976) 561-592. MR 0384707
V.G. DRINFELD: Elliptic modules II, Math. U.S.S.R. Sbornik 31 (1977) 159-170. MR 0439758
D. GOSS: The Algebraist's Upper Half Plane, Bull. Amer. Math. Soc. 2 No. 3 (May 1980) 391-415. MR 0561525
D. GOSS: What is a shtuka? Notices of the Amer. Math. Soc. Vol. 50 No. 1 (2003) 36-37.
D. GOSS: The impact of the infinite primes on the Riemann hypothesis for characteristic $p$ valued $L$-series, in: Algebra, Arithmetic, and Geometry with Applications Papers from Shreeram S. Abhyankar's 70th Birthday Conference, Springer (to appear).
D. GOSS: Can a Drinfeld module be modular? J. Ramanujan Math. Soc. 17 No. 4 (2002) 221-260.
D. HAYES: Explicit class field theory for rational function fields, Trans Amer. Math. Soc. 189 (1974) 77-91. MR 0330106
N. KATZ, P. SARNAK: Zeroes of zeta functions and symmetry, Bull. Amer. Math. Soc. (N.S.) 36 (1999) 1-26. MR 1640151
L. LAFFORGUE: Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math. 147 (2002) 1-241. MR 1875184
J. NEUKIRCH: Algebraic Number Theory, Springer, Berlin-Heidelberg-New York (1999). MR 1697859
B. RIEMANN: Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsberichte der Berliner Akademie (1859); Gesammelte Werke, Teubner, Leipzig (1892).
P. ROQUETTE: Class field theory in characteristic $p$, its origin and development. Class field theory--its centenary and prospect (Tokyo, 1998) Adv. Stud. Pure Math. 30, Math. Soc. Japan, Tokyo (2001). MR 1846477
D. THAKUR: Gamma functions for function fields and Drinfeld modules, Ann. Math. (2) 134 (1991) 25-64. MR 1114607
B.L. VAN DER WAERDEN: A History of Algebra, Springer, Berlin-Heidelberg-New York (1985). MR 0803326
D. WAN: On the Riemann hypothesis for the characteristic $p$ zeta function, J. Number Theory 58 (1996) 196-212. MR 1387735
A. WEIL: Variétés Abéliennes et Courbes Algébriques, Hermann (1971). MR 10:621d

Review Information:

Reviewer: David Goss
Affiliation: The Ohio State University
Journal: Bull. Amer. Math. Soc. 41 (2004), 127-133
Published electronically: October 29, 2003
Review copyright: © Copyright 2003 American Mathematical Society