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The discovery 18 years ago by Vaughan Jones of a powerful new polynomial
invariant for knots and links began a revolution in knot theory. Of the nearly 8,000
Mathematical Reviews about knots, more than two thirds have appeared after 1985.
Connections between knot theory and other areas of mathematics as well as physics
are no longer surprising. Into this heady environment come two new publications,
both revisions of important books on knots and links, both surveying knot theory
from an earlier, mostly algebraic point of view.

Knots, 2nd edition, by Gerhard Burde and Heiner Zieschang, revises and expands
the first edition, which was published in 1985. In this book, which has a strongly
group-theoretic flavor, links appear, but high-dimensional knots do not. Knots is
intended as a textbook, and according to its authors, inspiration was derived from
Dale Rolfson’s classic Knots and Links, Publish or Perish Press, published in 1976
and reprinted in 1990 (with corrections).

Algebraic Invariants of Links, by Jonathan Hillman, is a greatly revised and
expanded version of Hillman’s Alexander Ideals of Links, Springer-Verlag Lecture
Notes in Mathematics, Volume 895, published in 1981. Intended more as a reference
rather than a textbook, Algebraic Invariants of Links emphasizes links and high-
dimensional knots. It is more technical than Knots and requires a deeper algebraic
background from the reader.

Together these two books offer an algebraic view of knot theory that is both
panoramic and penetrating.

There are several superb surveys of knot theory ([G79], [KW79], [E99], [LO03],
[L03], [T85] for example), and it is not our purpose to compete with them. Rather,
we intend to describe some of the algebraic ideas that are central to the two books
under review. Details about the books themselves will be found in the final section.

I. Origins of the subject

Knots and links are an ancient part of human culture. For centuries they have
served to ornament and secure. Tying a knot in a handkerchief or some other
material remains a way of recalling to mind something that must be done. Tying
several knots can record a number. An early example of the practice is found in
The Persian Wars, written by Herodotus in 440 B.C.:

The king took a leather thong and tied sixty knots in it. He called
together the Ionian rulers, and addressed them as follows: “...From
the time that I leave you to march into Scythia, untie one of the
knots each day. If I do not return before the knots are untied, then
leave your station, and sail back to your homes.”
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It is puzzling that mathematical questions about knots and links do not appear
until the 19th century. One possible explanation is that mathematicians had not
yet formulated the topological concepts needed to ask such questions. Another
reason is that a mathematician’s knot differs from that of a workman or a sailor by
having no loose ends: a knot is an embedded circle in 3-space S3. (For simplicity
we will work only in the smooth setting, where functions have partial derivatives
of all orders.) A link is a finite collection of mutually disjoint knots, each knot
referred to as a component of the link. Two knots or links are regarded as the same
if they are ambiently isotopic, that is, if one can be smoothly deformed into the
other. Other, weaker equivalence relations such as concordance and link homotopy
are considered as well.

The earliest significant theorem of the subject is one about links. In 1833 Gauss
showed that “number of intertwinings”, what we now call the linking number of
two knots, can be computed by an integral [G33]. (Gauss’s integral finds the degree
of a map from a torus, which parametrizes the link, to the 2-sphere.) It is likely
that Gauss was motivated by the problem of determining the smallest region of the
celestial sphere, the zodiacus, onto which the orbits of two heavenly bodies can be
projected [E99].

The fundamental problem of knot theory is that of classification. Gauss’s student
and protegé, J.B. Listing, came very close to posing it. In his 1848 paper Vostudien
zur Topologie [L48], which introduced the term topology, Listing used polynomials
to encode knot diagrams combinatorially, hoping to create a practical calculus. He
could prove very little, but he did show that the figure eight knot (now sometimes
called Listing’s knot) is isotopic to its mirror image.

The most important figure in 19th century knot theory was the Scottish physicist
P.G. Tait. Motivated by Von Helmholtz’s investigation of vortex motion and by the
theory of the vortex atom proposed by William Thompson (later Lord Kelvin), Tait
began compiling tables of knots [T77], [T84], [T84′]. After Helmholtz had shown
that a closed orbit in a frictionless and incompressible fluid can be neither created
nor destroyed, Kelvin proposed that atoms are eternal knotted vortices rotating in
an aether. Kelvin’s theory appealed to Tait on both scientific and philosophical
levels. In [T76] Tait wrote: “Thus this property of rotation may be the basis of
all that to our senses appeals as matter.” He lamented, “Unfortunately, it appears
impossible for us to form, even with an imperfect fluid like air or water, a vortex-
filament of any more complex character than that simple circle.”

James Clerk Maxwell had been a school friend of Tait. They attended Edinburgh
Academy together and remained lifelong friends. Maxwell’s monumental Treatise
on Magnitism and Electricity [M91] employed many of the terms and ideas of
Listing’s Topologie. It also explained a deep physical application of Gauss’s linking
integral: If one knot is regarded as a wire through which electric current passes,
then the integral expresses the work done against the induced magnetic field by
a charged particle traveling along a path described by the other knot. Maxwell
was struck by the idea that two knots can have zero linking number and yet be
inseparably “interlocked”. An illustration of such a link appears in the Treatise
(Volume II, p. 43). Perhaps it was this image that caused Maxwell to pen the
following verse [K11]:
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It’s monstrous, horrid, shocking,
Beyond the power of thinking,

Not to know, interlocking
Is no mere form of linking.

Tait employed knot diagrams, drawings that represent knots and links as curves
with transversal intersection points, called crossings. The simple trompe l’oeil effect
of breaking an arc indicates that an arc dips below the plane of projection. Tait
understood that certain simple local changes in the diagram would not alter the
isotopy class of the knot. What he apparently did not know was that successive
applications of just three special changes are also sufficient to convert any diagram
representing one knot to another. The latter fact was proved by K. Reidemeister
in 1932 [R32], and the three changes are now called Reidemeister moves. As a
consequence, knots and links can be studied formally as equivalence classes of dia-
grams. Any quantity defined for a diagram that is unchanged by each of the three
Reidemeister moves is necessarily an invariant.

Tait’s approach was intuitive. He had no effective tools to tell that two knots
were different. Rigorous methods for distinguishing knots would have to wait until
the next century. Indeed, several of Tait’s conjectures were settled only in recent
years using the Jones polynomial [K87], [M87], [MT93], [T87].

It is ironic that while knot theory is the offspring of a fanciful physical theory, its
more serious connections with physics have only recently been glimpsed. In 1987
M. Atiyah speculated that a relationship might exist between the Jones polynomial
and Floer homology [A88]. The latter is homology theory of 3-manifolds based on
consideratons of gauge theory and instantons. One year later E. Witten presented
a formulation of the Jones polynomial in terms of topological quantum field theory
[W89], [W89′]. It is likely that any discovery of a direct connection between the
Jones polynomial and the algebraic themes of Knots and Algebraic Invariants of
Links would begin yet another revolution in knot theory.

II. Knot theory in the twentieth century

High-dimensional knots first appeared in a paper by E. Artin in 1925 [A25].
An n-knot, for n ≥ 1, is an embedded n-sphere in Sn+2. Similarly, an n-link is
a collection of n-knots. (Since an n-knot is a special case of an n-link, we will
occasionally use just the latter term for the sake of simplicity. We will refer to 1-
links simply as links, reserving the more technical term for the higher dimensional
objects.) As in the classical case of n = 1, two n-links are regarded as the same if
they are ambiently isotopic.

Knot theory is intrinsically connected with the study of manifolds, a fact that
itself bestows a raison d’etre on the subject. Every closed orientable 3-manifold
arises as a covering space of S3 branched over a link [A20].

On a simpler level, the complementary space Sn+2 \ ` of an n-link is determined
up to homeomorphism by the isotopy class of `, and hence any topological invariant
of the complement is an invariant of `. A particularly important invariant is the
Poincaré or fundamental group π1(Sn+2 \ `), called simply the group of ` and
often denoted by π(`) (abbreviated further by π, if the link is understood). Efforts
of Dehn, Reidemeister, Seifert and Wirtinger in the early 1900’s resulted in an
algorithm to determine a finite presentation of π(`) for any link ` ⊂ S3 from a
diagram.
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High-dimensional knots are more difficult to visualize than classical knots. In
general one cannot simply draw a picture. (Sequences of cross-sections, however,
can help us see 2-knots [R93], [CS98].) Artin’s paper provided a simple and direct
construction called “spinning”. Given any n-link `, one obtains an (n+1)-link with
the same group as `. Consequently, the sets Gn of n-knot groups are nested. In
fact,

G1 ( G2 ( G3 = · · · = Gn = · · · .

(The first proper inclusion was shown by Kervaire [K64]; for the second, see Farber
[F75], Gutierrez [G72], Levine [L77], for example.)

If π is the group of a µ-component n-link, then:

(1) π is finitely presentable;
(2) π is generated by the conjugates of µ elements;
(3) the abelianization π/π′ is isomorphic to Zµ;
(4) if n > 1, then H2(π,Z) = 0.

In 1964, M. Kervaire used surgery techniques to prove the converse statement
when n ≥ 3 [K64]: any group satisfying conditions (1) – (4) is the group of 3-
link. In the hands of Haefliger, Levine, Cappell and Shaneson, and others, surgery
theory became a powerful tool for high-dimensional knot theory. See [LO03] for an
overview.

While high-dimensional knot groups are characterized, open problems and ques-
tions remain in lower dimensions. Is there an intrinsic characterization of n-knot
groups, for n = 1, 2? Is every finitely generated subgroup of a 2-knot group nec-
essarily finitely presentable? Is every epimorphism from the commutator subgroup
of a 1-knot group to itself necessarily an isomorphism?

For classical links, the group is a complete invariant in the following sense. For
convenience, we orient the components of a link and require that isotopy respect
them. We can select tubular neighborhoods Vi for the µ components of a link `.
Each Vi is a solid torus, and we can easily arrange that Vi ∩Vj 6= ∅ whenever i 6= j.
A loop mi ⊂ ∂Vi that is noncontractible in the boundary but bounds a disk in Vi is
called an ith meridian of `; a loop li ⊂ ∂Vi that meets mi transversally in a single
point and is null-homologous in S3 \ `i is called an ith longitude. Well-defined
orientations for mi and li are induced by the orientation of the corresponding
component of `. After choosing a path from a base point to mi ∩ li, we can regard
mi and li as elements of π(`). The conjugacy class 〈mi, li〉π of subgroups in π(`)
generated by mi and li is well-defined, independent of the choice of base path. The
group system of ` is the tuple

(π; 〈m1, l1〉π , . . . , 〈mµ, lµ〉π).

A theorem of F. Waldhausen [W68] implies that two links are identical if and only
if their group systems are the same in the sense that there exists an isomorphism
of their groups that maps corresponding pairs of meridian and longitude elements
to each other. It follows that a link is trivial (that is, the boundary of mutually
disjoint disks) if and only if its group is free.

While the group system of a link is a complete invariant, extracting information
from it is a formidable task. An algebraic approach to knot theory seeks invariants
of the group system that are computable and yet nontrivial. The most basic ones
are derived from the homology of covering spaces of the link complement.



BOOK REVIEWS 139

The homology group H1(Sn+2\`) ∼= π/π′ (integer coefficients understood) is free
abelian with generators t1, . . . , tµ corresponding to meridians of `. It is useful to
regard it as a multiplicative group Π = 〈t1, . . . , tµ〉. The universal abelian covering
X̃ of Sn+2\`, the cover corresponding to π′, is a storehouse of all abelian invariants
of `.

The group Π acts on X̃ as the covering transformation group, and each homol-
ogy group HiX̃ , regarded as a module over the integral group ring ZΠ, is finitely
generated. Identifying ZΠ with the Laurent polynomial ring Λ in the variables
t1, . . . , tµ allows us to regard HiX̃ as a Λ-module.

Although Λ is Noetherian and a unique factorization domain, there is no really
satisfactory theory of finitely generated Λ-modules. Fortunately, computable in-
variants exist. For each nonnegative integer d, the dth elementary ideal Ed(`) =
Ed(H1X̃) is the ideal of Λ generated by the (n−d)-minors of anm-by-n presentation
matrix for H1X̃. The greatest common divisor of its elements is the dth charac-
teristic polynomial ∆d(`) = ∆d(H1X̃). The polynomial ∆0(`) is usually called the
Alexander polynomial of ` and it is often abbreviated by ∆(`).

When n > 1, the link group carries much less information than it does in the
classical dimension. (One considers only the group and meridian elements, since
longitudinal elements are meaningless.) Given any n-knot, there are infinitely many
with the same group. In this case invariants must be sought elsewhere, such as in
higher homology groups and higher homotopy groups of X̃.

In the 1950’s and 1960’s knot theory was rejuvenated by the work of Ralph
Fox and John Milnor. In his senior thesis, written under Fox’s direction, Milnor
introduced link homotopy, a deformation by which each component of a link is
allowed to pass through itself (but not through any other) [M54]. In particular,
small local knots, which have no effect on linking number, can be eliminated. The
relation of link homotopy, clearly weaker than isotopy, gets closer to the heart of
linking phenomena.

Milnor defined a group G, the largest quotient of π in which each meridian
generator mi commutes with all of its conjugates; it is the largest common quotient
of the groups of those links that are link homotopic to `. In the case of a knot, G is
simply the infinite cyclic abelianization of π, as one would expect since all knots are
link homotopic. However, for links of more than one component, G is a nontrivial
invariant of link homotopy.

Milnor’s group remains an object of study today. Let Ni be the subgroup of G
generated by the commutators [g, [g,mi]], where g ∈ G. Following J. Levine [L88]
we consider peripheral pairs (mi, liNi, ), where by abuse of notation the meridian
mi is identified with its image in G while liNi is a coset of Ni in G. In a sense,
(G(`); 〈m1, l1N1〉G , . . . , 〈mµ, lµNµ〉G) is a link homotopy analog of the group system
of ` defined earlier. Levine conjectured that two links are link homotopic if and
only if there is an isomorphism between their Milnor groups inducing maps that
match corresponding peripheral pairs, and he verified this in [L88] for links of up
to four components. James Hughes, a former student of Levine, showed that the
above peripheral structure is finer than that considered by Milnor. However, his
arguments [H93], [H98] suggest that Levine’s peripheral structure might need to be
made finer yet for links of more than four components.

Milnor introduced a sequence of numerical invariants that generalize Gauss’s
linking numbers [M54], [M57]. He defined these “higher linking numbers”, called
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µ̄-invariants, in terms of the coefficients of Magnus expansions of words represent-
ing the longitudes. Fox’s “free differential calculus” provided the computational
machine. However, they are usually difficult to compute. General µ̄-invariants are
related to certain Massey cohomology products. Often they can be computed in
a more geometric fashion via intersection theory, as T. Cochran has shown [C90].
Milnor showed that the invariants vanish if and only if the link is homotopically
trivial. A complete classification of links up to link homotopy was achieved by N.
Habegger and X.S. Lin [HL90]. They also provided an effective algorithm to decide
if two links are link homotopic.

The study of singularities of surfaces in 4-space led Fox and Milnor to introduce
yet another equivalence relation [FM66]. Knots k0 ⊂ R × {0} and k1 ⊂ R × {1}
are concordant if together they form the boundary of an annulus embedded in
R× [0, 1]. Recall that all maps here are infinitely differentiable. The same relation
with the weaker requirement that the annulus be topologically embedded is called
I-equivalence. Clearly isotopy implies concordance implies I-equivalence. Isotopy
is a stronger requirement than concordance, as we shall see. That concordance
is stronger than I-equivalence is less obvious. Although the last result, due to
C. Giffen [G76], is unpublished, a short exposition is presented in the first chapter
of Algebraic Invariants of Links.

A knot that is concordant to the trivial knot is called a slice knot. The simplest
nontrivial example is the square knot, the connected-sum of a left-hand trefoil and
a right-hand trefoil. (The connected sum of two knots is obtained by splicing
them together.) The set of concordance classes of knots under the connected sum
operation forms an abelian group C in which the identity element is the class of slice
knots. No complete set of invariants for knot concordance is known. However, in
[COT03] Cochran, K. Orr and P. Teichner exhibited a new, geometrically defined
filtration of C:

· · · ⊂ F(n.5) ⊂ F(n) ⊂ · · · ⊂ F(0.5) ⊂ F(0) ⊂ C,

indexed by half-integers. The first few terms correspond closely to previously known
concordance invariants. If the class of a knot is in F(1.5), then all previously known
concordance invariants of the knot vanish. Such invariants include those of A. Cas-
son and C. McA. Gordon [CG75] as well as P. Gilmer [G83], [G93], P. Kirk and C.
Livingston [KL99] and C. Letsche [L00].

Most known examples of slice knots, such as the square knot, bound disks in
4-space that project with only ribbon singularities, singularities that resemble a
piece of a ribbon passing through the interior of another. Knots that bound such
disks are called ribbon. One of the most stubborn open questions in knot theory
asks whether every slice knot is ribbon. There are other important questions as
well. One consequence of Freedman’s surgery theory in the topological category is
that every knot with Alexander polynomial one bounds a locally flat disk in the
4-ball. Must it bound a smooth disk (that is, must it be slice) [K97, Problem 1.36]?
An algorithm exists for deciding whether a knot is trivial [H61], but the problem
remains of finding an algorthithm for determining whether a knot is slice or ribbon
[K97, Problem 1.34].

Concordance can be defined also for higher-dimensional knots and links, and
much is known. Kervaire [K65] proved that all even-dimensional knots are slice,
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while Levine [L69] and Stoltzfus [S77] determined the concordance groups of odd-
dimensional knots k ⊂ S2n+1, n > 1. Still, questions remain. For example, it is not
known if all even-dimensional links are slice.

III. Details of the books

Knots consists of 15 chapters and four appendices that guide the reader through
much of classical knot theory. Each chapter concludes with a brief history and
exercises. The tables of knot invariants in the first edition of Knots contained
errors that have been removed. An updated 40-page bibliography will be valued by
anyone attempting to work in this swiftly moving field.

Chapters 1 and 2 are concerned with basic definitions and geometric concepts.
Knot diagrams, Reidemeister moves, and the connected sum operation are ex-
plained. Prime knots, those knots that cannot be nontrivially expressed as con-
nected sums, have an atomic significance in the subject just as primes do in num-
ber theory. Satellite knots, which generalize connected sums, are also described.
Roughly, k is a satellite of another knot k̂ if it is contained nontrivially in a thick-
ened copy of k̂. That satellite knots can be prime gives an idea of the concept’s
subtlety.

Chapters 3, 4 and 5 cover material about knot groups π and their commutator
subgroups π′. Fibered knots can be characterized in such terms. They are knots for
which π′ is finitely generated. (A more topological definition is given below.) The
authors have taken the opportunity to correct an erroneous result about fibered
satellite knots that appeared in the first edition.

Torus knots are so named because they can be isotoped to lie on a standardly
embedded torus. In many ways they are the simplest nontrivial knots. Chapter 6
is devoted to a proof of an important result due to the authors: A nontrivial knot
is a torus knot if and only if its group has nontrivial center.

Chapter 5 is devoted to the study of fibered knots. A knot k is fibered if its
complement admits a locally trivial fibration over the circle. In this case, S3 minus
an open tubular neighborhood of k is diffeomorphic to S× [0, 1]/{(x, 0) ∼ (h(x), 1),
for some compact orientable surface S with boundary, and some homeomorphism
h : S → S called a monodromy. The trefoil and figure eight knot, the two nontrivial
knots that can be drawn with fewer than 5 crossings, are both fibered. Fibered
knots can be studied through the properties of their monodromy h. This point of
view opens the door to geometry and dynamics. Regrettably, such topics are not
addressed in Knots.

Chapters 8, 9 and 13 are substantial introductions to cyclic covering spaces and
their homology groups. The reader will find a careful exposition of Fox’s theory of
derivations (the so-called Fox differential calculus) and several well-chosen exam-
ples. Although the authors minimize space devoted to links, they wisely included
a section about the multivariable Alexander polynomials that are defined by them.

Classical knots and links can be studied from the point of view of braids, invented
by Artin in 1925. Briefly, a braid is an isotopy class of any number of mutually
disjoint strands that run strictly downwards from one level R2×{1} to another R2×
{0}. Braids with the same number of strands form a group under concatenation.
Connecting the ends of a braid in a fixed manner, without introducing any new
crossings, produces a knot or link. Such closed braids had already appeared: in
1923, J. Alexander had shown that any knot or link arises as a closed braid. The
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braid point of view has continued to be useful, suggesting connections with areas
such as dynamical systems, robotics and statistical mechanics, just to name a few.
Braids and representations of their groups motivated Jones’s discoveries in the mid
1980’s. Chapter 10 is devoted to this vital topic. A new feature in this edition
of Knots is a proof of Markov’s theorem, which states that two (oriented) links
represented by braid closures are isotopic if and only if the corresponding braids
differ by a finite sequence of elementary moves (“Markov moves”).

In 1920 J. Alexander proved that every closed 3-manifold arises as a covering of
S3 branched over a link. Alexander’s argument was completed independently by
J. Birman and H. Hilden in 1975, and the result was then improved by Hilden and
J. Montisinos in 1976. Chapter 11 contains proofs of the theorems of Alexander and
Hilden-Montisinos. There is also a discussion of Heegaard diagrams for 3-manifolds.

Chapter 12 is devoted to 2-bridge knots, knots that have diagrams with only two
local maxima. Montisinos links, which in a sense generalize 2-bridge knots, are also
treated.

Chapters 14 and 15 bring the reader back to knot groups. Representations
onto simpler groups have been a source of usable knot invariants. Metabelian
representations are discussed in detail. Many knots possess diagrams that display
rotational symmetry of some period. The authors use metabelian representations
to investigate the form of the Alexander polynomial of periodic knots. The powerful
periodicity results of Murasugi can be found here.

After reminding the reader that the group and its peripheral structure determine
any knot, Chapter 15 investigates the subtle role that the meridian and longitude
play. We are informed that the long-standing conjecture that knots themselves are
determined by their complements was finally proved by Gordon and J. Luecke in
1989. Unfortunately, a proof of the Gordon-Luecke theorem is outside the scope
of the book. Combining this with a theorem of W. Whitten [W87], we arrive
at the appealing conclusion that there are at most two distinct prime knots with
isomorphic groups.

The final chapter was added to the new edition, a very brief treatment of the
HOMFLY polynomial (named after its main contributors: J. Hoste, A. Ocneano,
K. Millet, W. Floyd, R. Lickorish and D. Yetter, but missing others: J. Conway,
L. Kauffman, J. Przytycki and P. Traczyk). A generalization of the Jones poly-
nomial, it can be computed in a simple combinatorial manner beginning with a
knot or link diagram. However, deeper understanding comes from its derivation
via a beautiful representation of the braid group into a Hecke algebra, the details
of which can be found here.

The exposition of Knots is both careful and concise, and every topic chosen is
essential to the subject. It is understandable that links are mentioned only briefly
and a discussion of high-dimensional knots is completely omitted. However, it is
regrettable that the word “geometric” is used here only in the most restricted way.
Thurston’s discovery that the complement of any knot that is neither a satellite
nor a torus knot admits a hyperbolic structure afforded a powerful new approach
to the subject.

Alas, one must make choices when writing such a book. Nevertheless, the topics
covered here form a beautiful whole. Knots will be appreciated by anyone interested
in the subject, especially from a group-theoretic point of view.
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Algebraic Invariants of Links concentrates on links of more than one component
as well as high-dimensional knots. The book has three parts: Abelian covers;
Applications: special cases and symmetries; and Free covers, nilpotent quotients
and completion.

Chapter 1 introduces the main definitions and equivalence relations of link the-
ory. Boundary links, defined here, are in some ways more similar to knots than
general links, and they appear throughout the book. An n-link is a boundary
link if its components bound pairwise disjoint orientable manifolds (called Seifert
hypersurfaces). An n-knot is trivially a boundary n-link, since a Seifert hypersur-
face bounding it can always be found. The algebraic attraction of boundary links
becomes apparent in the classical case: a result of N. Smythe [S66] says that a
µ-component link ` is a boundary link if and only if its group maps onto the free
group F (µ) of rank µ, sending some set of meridians to a basis of F (µ). If the
requirement on the meridians is dropped, then ` is said to be a homology boundary
link.

Chapter 2 begins with a review of homology and cohomology with local coef-
ficients. The Blanchfield pairing is introduced. A version of Poincaré duality for
covering spaces, the pairing has proven to be essential in high-dimensional knot
theory. Any (2q − 1)-knot, for q ≥ 2, is determined up to concordance by the
equivalence class of its Blanchfield pairing in a certain Witt group.

While not a complete concordance invariant for 1-knots, the pairing is still of
great interest. The chapter concludes with a discussion of signature invariants for
odd-dimensional knots.

A review of elementary ideals and other determinantal module invariants is found
in Chapter 3. It is followed by a discussion of maximal abelian covers in the next
chapter. Chen groups, associated to any finitely generated group, are defined. For
an n-link group π, they are the finitely generated abelian quotients Ch(π, q) =
πqπ

′′/πq+1π
′′, q ≥ 2. (Here πq is the qth term of the lower central series of π.)

It is shown that for any µ-component link, the Alexander ideal Eµ−2(`) vanishes
if and only if the Chen groups Ch(π, q) agree with those of a trivial µ-component
link if and only if the longitudes of ` are contained in every π′qπ′′. (Hillman proved
this result in 1978, generalizing the case for µ = 2 shown by Murasugi eight years
earlier.)

Chapter 5 addresses the relationships between Alexander invariants of a link
and those of its various sublinks. Intermediate abelian covering spaces of links
such as the infinite cyclic “total linking number cover” are discussed. The chapter
begins with the important Torres conditions, necessary conditions on the Alexander
polynomial of a link, and generalizions for Alexander ideals and n-links due to
Blanchfield, N. Sato and L. Traldi. A discussion of twisted Alexander polynomials,
a topic that reappears constantly in knot theory, completes the first part of the
book.

Chapter 6 is devoted to the study of knot modules. A knot module is a finitely
generated Z[t, t−1]-module on which t−1 acts invertibly. The homology modules of
the universal abelian cover of the complement of an n-knot are motivating examples.
Levine and M. Farber have classified large classes of higher-dimensional knots in
terms of their knot modules and associated pairings, while Levine and C. Kearton
have shown that the concordance class of a (2n+1)-knot, for n ≥ 1, is determined by
the Blanchfield pairing on the middle-dimensional knot module. The classification
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problem for knot modules remains open. While 3-knot groups are classified, 3-knot
modules are not.

In view of the wealth of sophisticated results in knot theory, it is amazing that
many simple questions persist. One such question is: what polynomials arise as
Alexander polynomials of 2-component links? Chapter 7 examines 2-component
links. It begins with a review of important results in J. Bailey’s unpublished Ph.D.
thesis. It concludes with several examples, including a nontrivial 2-component
ribbon link with group π such that π/π′′ ∼= F (2)/F (2)′′. In particular, ` has the
same abelian invariants as a trivial link. The 3-component link that decorates the
cover of the book is closely related: this example, due to Hillman, is a nonboundary
link with the algebraic properties of a boundary link (in particular, its group maps
onto F (3)).

Chapter 8 reviews results about symmetries of links and properties that are
reflected in the Alexander invariants and concludes the second part of the book.

Exteriors of homology boundary links have covers with nontrivial free covering
group. The third part of Algebraic Invariants of Links describes invariants of such
covers. Chapter 9 surveys results of Sato, Du Val and Farber about modules over
free group rings. Included is a theorem of Gutiérrez stating that a µ-component n-
link ` with n ≥ 3 is trivial if and only if π(`) ∼= F (µ), with basis a set of meridians,
and higher homotopy groups πj(Sn \ `) = 0 for 1 < j ≤ [(n+ 1)/2]. This result is
a higher-dimensional version of the fact that a classical link is trivial if and only if
its group is free.

The quotients of a link group by terms of its lower central series are I-equivalence
invariants of the link. Chapter 10 explores properties of invariants associated to
link exterior covers corresponding to canonical subgroups of the link group.

The last two chapters are introductions to Levine’s work on algebraic closure
and completions of groups, Le Dimet’s high-dimensional disk links, and the link
homotopy classification result of Habegger and Lin mentioned earlier. As Hillman
explains in the introduction of his book, work in these areas is evolving. Many
open questions and provocative conjectures are offered. This section will be most
interesting to those looking for challenging research problems in link theory.

Algebraic Invariants of Links is masterful, offering a survey of work, much of
which has not been summarized elsewhere. It is an essential reference for those
interested in link theory. My only complaint is that the book is terse. The material
presented could easily accommodate a book more than twice as long. Additional
examples would help the reader. However, the criticism seems minor in view of the
fact that there is no other book that covers such topics. Algebraic Invariants of
Links is unique and valuable.

IV. Concluding remarks

Knot theory is changing faster than anyone might have predicted. The combina-
torial approach, which marked the emergence of the subject but was later overtaken
when algebraic methods proved more effective, has returned with surprising vigor.
Geometric perspectives have reshaped the methods and problems of the subject.
Yet we continue to find that the development of our new structures requires a famil-
iarity with earlier, algebraic concepts. (Consider, for example, our understanding of
hyperbolic structures on knot complements, which relies so heavily on knot group
representations.) Knots and Algebraic Invariants of Links support a foundation
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that will enable us to reach even higher levels of understanding of knotting and
linking phenomena in this new century.
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