The wave maps equation
HTML articles powered by AMS MathViewer
- by Daniel Tataru PDF
- Bull. Amer. Math. Soc. 41 (2004), 185-204 Request permission
Abstract:
The wave maps equation has become a very popular topic in recent years. The aim of these expository notes is to present a non-technical survey of the ideas and methods which have proved useful in the study of wave maps, leading up to the latest results. The remaining open problems are also stated and explained.References
- Piotr Bizoń, Tadeusz Chmaj, and Zbisław Tabor, Formation of singularities for equivariant $(2+1)$-dimensional wave maps into the 2-sphere, Nonlinearity 14 (2001), no. 5, 1041–1053. MR 1862811, DOI 10.1088/0951-7715/14/5/308
- H. Brezis and L. Nirenberg, Degree theory and BMO. I. Compact manifolds without boundaries, Selecta Math. (N.S.) 1 (1995), no. 2, 197–263. MR 1354598, DOI 10.1007/BF01671566
- Thierry Cazenave, Jalal Shatah, and A. Shadi Tahvildar-Zadeh, Harmonic maps of the hyperbolic space and development of singularities in wave maps and Yang-Mills fields, Ann. Inst. H. Poincaré Phys. Théor. 68 (1998), no. 3, 315–349 (English, with English and French summaries). MR 1622539
- Demetrios Christodoulou and A. Shadi Tahvildar-Zadeh, On the regularity of spherically symmetric wave maps, Comm. Pure Appl. Math. 46 (1993), no. 7, 1041–1091. MR 1223662, DOI 10.1002/cpa.3160460705 ag Piero D’Ancona and V. Georgiev, Ill posedness results for the two dimensional wave maps equation, preprint.
- Alexandre Freire, Stefan Müller, and Michael Struwe, Weak compactness of wave maps and harmonic maps, Ann. Inst. H. Poincaré C Anal. Non Linéaire 15 (1998), no. 6, 725–754 (English, with English and French summaries). MR 1650966, DOI 10.1016/S0294-1449(99)80003-1
- J. Ginibre and G. Velo, The Cauchy problem for the $\textrm {O}(N),\,\textbf {C}\textrm {P}(N-1),$ and $G_{\textbf {C}}(N,\,p)$ models, Ann. Physics 142 (1982), no. 2, 393–415. MR 678488, DOI 10.1016/0003-4916(82)90077-X
- M. L. Gromov, Isometric imbeddings and immersions, Dokl. Akad. Nauk SSSR 192 (1970), 1206–1209 (Russian). MR 0275456
- Chao Hao Gu, On the Cauchy problem for harmonic maps defined on two-dimensional Minkowski space, Comm. Pure Appl. Math. 33 (1980), no. 6, 727–737. MR 596432, DOI 10.1002/cpa.3160330604
- Matthias Günther, Isometric embeddings of Riemannian manifolds, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 1137–1143. MR 1159298
- Frédéric Hélein, Régularité des applications faiblement harmoniques entre une surface et une sphère, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 9, 519–524 (French, with English summary). MR 1078114
- Frédéric Hélein, Harmonic maps, conservation laws and moving frames, 2nd ed., Cambridge Tracts in Mathematics, vol. 150, Cambridge University Press, Cambridge, 2002. Translated from the 1996 French original; With a foreword by James Eells. MR 1913803, DOI 10.1017/CBO9780511543036
- James Isenberg and Steven L. Liebling, Singularity formation in $2+1$ wave maps, J. Math. Phys. 43 (2002), no. 1, 678–683. MR 1872523, DOI 10.1063/1.1418717
- Markus Keel and Terence Tao, Local and global well-posedness of wave maps on $\mathbf R^{1+1}$ for rough data, Internat. Math. Res. Notices 21 (1998), 1117–1156. MR 1663216, DOI 10.1155/S107379289800066X
- S. Klainerman, The null condition and global existence to nonlinear wave equations, Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984) Lectures in Appl. Math., vol. 23, Amer. Math. Soc., Providence, RI, 1986, pp. 293–326. MR 837683
- S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993), no. 9, 1221–1268. MR 1231427, DOI 10.1002/cpa.3160460902
- Sergiu Klainerman and Igor Rodnianski, On the global regularity of wave maps in the critical Sobolev norm, Internat. Math. Res. Notices 13 (2001), 655–677. MR 1843256, DOI 10.1155/S1073792801000344
- Sergiu Klainerman and Sigmund Selberg, Remark on the optimal regularity for equations of wave maps type, Comm. Partial Differential Equations 22 (1997), no. 5-6, 901–918. MR 1452172, DOI 10.1080/03605309708821288 krieger Joachim Krieger, Global regularity of wave maps from $R^{3+1}$ to surfaces, Comm. Math. Phys. 238 (2003), no. 1-2, 333–366.
- O. A. Ladyzhenskaya and V. I. Shubov, On the unique solvability of the Cauchy problem for equations of two-dimensional relativistic chiral fields with values in complete Riemannian manifolds, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 110 (1981), 81–94, 242–243 (Russian). Boundary value problems of mathematical physics and related questions in the theory of functions, 13. MR 643976
- Hans Lindblad, A sharp counterexample to the local existence of low-regularity solutions to nonlinear wave equations, Duke Math. J. 72 (1993), no. 2, 503–539. MR 1248683, DOI 10.1215/S0012-7094-93-07219-5
- Stefan Müller and Michael Struwe, Global existence of wave maps in $1+2$ dimensions with finite energy data, Topol. Methods Nonlinear Anal. 7 (1996), no. 2, 245–259. MR 1481698, DOI 10.12775/TMNA.1996.011 nsu Andrea Nahmod, Atanas Stefanov, and Karen Uhlenbeck, On the well-posedness of the wave map problem in high dimensions, preprint.
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Jalal Shatah, Weak solutions and development of singularities of the $\textrm {SU}(2)$ $\sigma$-model, Comm. Pure Appl. Math. 41 (1988), no. 4, 459–469. MR 933231, DOI 10.1002/cpa.3160410405
- Jalal Shatah and Michael Struwe, Geometric wave equations, Courant Lecture Notes in Mathematics, vol. 2, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1998. MR 1674843
- Jalal Shatah and Michael Struwe, The Cauchy problem for wave maps, Int. Math. Res. Not. 11 (2002), 555–571. MR 1890048, DOI 10.1155/S1073792802109044
- Jalal Shatah and A. Shadi Tahvildar-Zadeh, On the Cauchy problem for equivariant wave maps, Comm. Pure Appl. Math. 47 (1994), no. 5, 719–754. MR 1278351, DOI 10.1002/cpa.3160470507
- Thomas C. Sideris, Global existence of harmonic maps in Minkowski space, Comm. Pure Appl. Math. 42 (1989), no. 1, 1–13. MR 973742, DOI 10.1002/cpa.3160420102
- Terence Tao, Global regularity of wave maps. I. Small critical Sobolev norm in high dimension, Internat. Math. Res. Notices 6 (2001), 299–328. MR 1820329, DOI 10.1155/S1073792801000150
- Terence Tao, Global regularity of wave maps. II. Small energy in two dimensions, Comm. Math. Phys. 224 (2001), no. 2, 443–544. MR 1869874, DOI 10.1007/PL00005588 wmfinal Daniel Tataru, Small solutions for the wave maps equation in critical Sobolev spaces, preprint.
- Daniel Tataru, Local and global results for wave maps. I, Comm. Partial Differential Equations 23 (1998), no. 9-10, 1781–1793. MR 1641721, DOI 10.1080/03605309808821400
- Daniel Tataru, On global existence and scattering for the wave maps equation, Amer. J. Math. 123 (2001), no. 1, 37–77. MR 1827277, DOI 10.1353/ajm.2001.0005
Additional Information
- Daniel Tataru
- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720
- MR Author ID: 267163
- Email: tataru@math.berkeley.edu
- Received by editor(s): May 10, 2003
- Received by editor(s) in revised form: September 28, 2003
- Published electronically: January 8, 2004
- Additional Notes: Lecture presented at the AMS Special Session on Mathematical Current Events: Expository Reports in Baltimore, MD, January 17, 2003
- © Copyright 2004 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 41 (2004), 185-204
- MSC (2000): Primary 35L70
- DOI: https://doi.org/10.1090/S0273-0979-04-01005-5
- MathSciNet review: 2043751