Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Gregory Cherlin and Ehud Hrushovki
Title: Finite structures with few types
Additional book information: Annals of Math Studies, Princeton University Press, Princeton, NJ, 2003, vi + 193 pp., ISBN 0-691-11331-9, $49.95$

References [Enhancements On Off] (What's this?)

  • Gisela Ahlbrandt and Martin Ziegler, Quasi-finitely axiomatizable totally categorical theories, Ann. Pure Appl. Logic 30 (1986), no. 1, 63–82. Stability in model theory (Trento, 1984). MR 831437, DOI 10.1016/0168-0072(86)90037-0
  • Peter J. Cameron, Oligomorphic permutation groups, London Mathematical Society Lecture Note Series, vol. 152, Cambridge University Press, Cambridge, 1990. MR 1066691, DOI 10.1017/CBO9780511549809
  • Gregory Cherlin, Large finite structures with few types, Algebraic model theory (Toronto, ON, 1996) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 496, Kluwer Acad. Publ., Dordrecht, 1997, pp. 53–105. MR 1481439
  • G. Cherlin, L. Harrington, and A. H. Lachlan, $\aleph _0$-categorical, $\aleph _0$-stable structures, Ann. Pure Appl. Logic 28 (1985), no. 2, 103–135. MR 779159, DOI 10.1016/0168-0072(85)90023-5
  • Ehud Hrushovski, Totally categorical structures, Trans. Amer. Math. Soc. 313 (1989), no. 1, 131–159. MR 943605, DOI 10.1090/S0002-9947-1989-0943605-1
  • W. M. Kantor, Martin W. Liebeck, and H. D. Macpherson, $\aleph _0$-categorical structures smoothly approximated by finite substructures, Proc. London Math. Soc. (3) 59 (1989), no. 3, 439–463. MR 1014866, DOI 10.1112/plms/s3-59.3.439
  • Byunghan Kim and Anand Pillay, Simple theories, Ann. Pure Appl. Logic 88 (1997), no. 2-3, 149–164. Joint AILA-KGS Model Theory Meeting (Florence, 1995). MR 1600895, DOI 10.1016/S0168-0072(97)00019-5
  • 8.
    A.H. Lachlan.
    Stable finitely homogeneous structures: a survey.
    In Valeriote Hart, Lachlan, editor, Algebraic Model Theory, pages 145-161. Kluwer Academic Publisher, 1997.
  • Michael Morley, Categoricity in power, Trans. Amer. Math. Soc. 114 (1965), 514–538. MR 175782, DOI 10.1090/S0002-9947-1965-0175782-0
  • Rohit Parikh, An $\aleph _{0}$-categorical theory whose language is countably infinite, Proc. Amer. Math. Soc. 49 (1975), 216–218. MR 381979, DOI 10.1090/S0002-9939-1975-0381979-9
  • Joseph G. Rosenstein, Theories which are not $\aleph _{0}$-categorical, Proceedings of the Summer School in Logic (Leeds, 1967) Springer, Berlin, 1968, pp. 273–278. MR 0237310
  • Boris Zilber, Uncountably categorical theories, Translations of Mathematical Monographs, vol. 117, American Mathematical Society, Providence, RI, 1993. Translated from the Russian by D. Louvish. MR 1206477, DOI 10.1090/mmono/117

  • Review Information:

    Reviewer: John T. Baldwin
    Affiliation: University of Illinois at Chicago
    Email: jbaldwin@uic.edu
    Journal: Bull. Amer. Math. Soc. 41 (2004), 391-394
    Published electronically: March 4, 2004
    Review copyright: © Copyright 2004 American Mathematical Society