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This book explores the deep connections, discovered in the last half century,
between model theory and the study of group actions. These connections arose from
some extremely basic questions about the expressive powers of formal languages and
developed into a classification scheme for certain families of finite structures.

Logic is that branch of mathematics that takes care to specify the formal lan-
guage (or vocabulary) for the study of a structure. A vocabulary τ is a finite or
countable set of relation symbols with various finite numbers of arguments. A τ -
structure is a set A along with an interpretation of each n-ary relation symbol as
a subset of An. A first order sentence is an expression built up from these basic
relations by Boolean operations and quantification over individuals. Truth of a
sentence φ in any τ -structure is naturally defined.

What is the correct formal vocabulary to describe a given mathematical situa-
tion, e.g. vector spaces over a finite non-prime field? That is, what is the auto-
morphism group of a vector space over a finite non-prime field? Usually, this group
is taken as the general linear group of the appropriate dimension. But for some
purposes the automorphisms of the field must be considered. The usual choice is
taken by including unary functions for scalar multiplication in the vocabulary of
vector spaces; the more complicated formalization of the other case involves binary
functions for scalar multiplication. This distinction plays a background role here
([3], page 56).

This book deals with a certain class of ℵ0-categorical structures: The Lowenheim-
Skolem theorem asserts that any sentence with an infinite model has one in every
infinite cardinality. A theory is a possibly infinite collection of sentences. A theory
T is κ-categorical if all models of T with cardinality κ are isomorphic. A structure
is ℵ0-categorical if and only if the set of sentences true in it forms an ℵ0-categorical
theory. For example, the theory of dense linear order without endpoints has exactly
one countable model – the rational order – so is ℵ0-categorical. Similarly, the theory
of those infinite Abelian groups such that every element has order 2 (more generally
pn for fixed prime p and exponent n) is ℵ0-categorical. These examples differ in
two important ways: the first is not categorical in any cardinal except ℵ0 and
is described by a single first order sentence. The second requires infinitely many
axioms to insist the universe is infinite; it is categorical in all cardinalities. The
analysis here shows these are fundamental distinctions.

The connections between model theory and the study of group actions are first
seen in the theorem proved independently by Engeler, Ryll-Nardzewski and Sveno-
nius in 1959. Permutation group theorists say a countable structure M is oligo-
morphic ([2]) if the automorphism group of M has only finitely many orbits of
n-tuples for each n. The theorem asserts that M is ℵ0-categorical if and only if
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it is oligomorphic. Hidden in this result is the fact that an ℵ0-categorical struc-
ture is ω-homogeneous; i.e. two finite sequences which satisfy the same formulas
without parameters are in the same orbit. (Model theorists say two k-tuples which
satisfy the same formulas have the same k-type.) From a permutation group stand-
point, the orbits of the group action are the natural objects. They provide a
‘canonical language’: include an n-ary relation symbol for each orbit of n-tuples.
The model theorist asks, ‘When does this canonical language have a finite basis?”
ℵ0-categoricity does not suffice [10]; sufficient conditions are described below.

Rosenstein [11] showed that for each n there is a structure which has finitely
many k-types only for k < n. But consider the following more uniform condition:
M is k-quasifinite if there is an integer m such that for any sentence φ true in
M , there is a finite model N of φ which realizes at most m, k-types. Now one of
the conclusions of the book is that if M is 4-quasifinite, it is ℵ0-categorical and
k-quasifinite for all k.

Much of the model theoretic interest in this area arose from two problems. One
was simply stated by Morley [9]: Can a first order sentence have exactly one model
in every infinite cardinality? The negative answer was obtained in the early 80’s
by Zilber [12] and Cherlin, Harrington, and Lachlan [4]. Key to the analysis was
the proof that a certain building block of such a structure – a strictly minimal set–
has the structure of a geometry. (This result can be deduced from the classification
of two-transitive groups (Cherlin and Mills); slightly later (although earlier partial
proofs were known) Zilber and Evans gave direct arguments.) The second, some-
what vaguer, motivation was Lachlan’s program to classify stable finitely homoge-
neous structures. Lachlan introduced the following notions. The finite structure N
is k-homogeneous in M if all definable (without parameters) relations on M induce
definable relations (without parameters) on N and each pair of k-tuples in N has
the same type in N if and only if they do so in M . The structure M is smoothly
approximable if it is ℵ0-categorical and every finite subset of M is contained in
a finite |N |-homogeneous substructure N . Smooth approximation guarantees that
every finite subset of M is contained in a finite ‘envelope’ that witnesses that every
sentence true in M is true in a finite homogeneous submodel. Thus the proof in [4]
that an ℵ0-categorical ℵ0-stable model is smoothly approximable provides a very
strong answer to Morley’s question.

The present book carries out Lachlan’s program [8]: classify the smoothly ap-
proximable structures. The solution is a collection of six equivalent conditions. One
is ‘strongly 4-quasifinite’ (even stronger than the condition summarized above). In
a different direction M is smoothly approximable if and only if it is Lie coordi-
natizable. There are two components to this notion. Roughly, it means that the
structure can be constructed in a nice way from a list of finite geometries. The
geometries are: a pure set, a pure vector space, a polar space, an inner product
space, an orthogonal space, and a quadratic geometry. The coordinatization is a
rather technical process, foreshadowed by Shelah’s structure theory for models of
stable theories and by the analysis of models of totally categorical theories, of de-
composing the model as a tree of geometries. The authors show (by induction on
the complexity of the decomposition) that any Lie coordinatizable structure can
be presented in a finite language and that the structure is model complete in that
language. Higman’s theorem is a crucial tool here. The proof ([4], [12]) that there
are no totally categorical sentences raised the question of whether every totally cat-
egorical structure could be axiomatized by a single sentence plus a schema asserting
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the universe is infinite. This conjecture was affirmed in some cases by Ahlbrandt-
Ziegler [1] and for ℵ0-categorical ω-stable structures by Hrushovski [5]. The result
is extended to Lie coordinatizable (i.e. smoothly approximable) structures in the
present book. Namely, any Lie coordinatizable structure is determined by the car-
dinality of each of a finite set of dimension invariants. Although these dimensions
are infinite in the given model, the model induces a class of finite structures each
determined by an appropriate finite sequence of dimensions. Thus, the book’s title
is justified by viewing the classification of smoothly approximable structures as the
classification of certain classes of finite structures. In particular, for any finite vo-
cabulary L and natural number k, the collection of finite L-structures which realize
less than k 4-types can be effectively partitioned into a finite number of classes each
of which can be axiomatized (in extensions of first order logic by some generalized
quantifiers).

The last two paragraphs made a subtle switch from Lachlan’s program to classify
stable finitely homogenous structures to the classification of smoothly approximable
structures. This extends the analysis to a properly larger class. The work done
by Cherlin and Hrushovski (following Kantor, Liebeck, and MacPherson [6] for the
primitive case) was one influence on the recognition that stability theory could
be fruitfully generalized to simplicity theory [7]. With rather gross inaccuracy, a
structure is stable if it imbeds neither a linear order nor a random graph; simple
structures are the best-behaved structures among those that do not imbed a linear
order. In the last 10 years, it has been discovered that the independence theory
which is the hallmark of a stable theory extends well to a simple theory. The analysis
in this book is both one of the origins of this insight and the most delicately worked
out exemplar of it. Consider the ‘amalgamation of types theorem’ (as it is called
here; more frequently the name is the ‘independence theorem’). Over models, the
independence theorem characterizes simple theories; in the more special situation
here it holds over algebraically closed sets. The conjectured extension of this result
to arbitrary simple theories is one of the main problems of simplicity theory.

We have given an account of some of the motivations for the study in this book
and a few of the major consequences. This says little about the actual content.
Written in a ‘take no prisoners style’, which may be needed to compress such a
detailed analysis to several hundred pages, stability theoretic techniques of rank
and the orthogonality calculus are combined with the permutation group technol-
ogy and a bit of cohomology to list all structures satisfying certain fairly simple
conditions. At one stage, [3], there was a clear division of labor: permutation group
theory handled the primitive case; the pasting together of the primitive components
was model theory. This distinction became blurred in the final version. From this
analysis, results of many kinds can be read off. One last example: there is an effec-
tive procedure to decide whether a first order sentence in vocabulary τ has a stable
homogeneous model (i.e. axiomatizes an ℵ0-categorical theory with elimination of
quantifiers in τ).

The book at hand provides a deep and penetrating analysis of a family of struc-
tures that answers many questions from model theory and finite model theory,
permutation group theory and combinatorics. What remains to be done? The fol-
lowing basic question regarding ℵ0-categorical structures remains open. We have
essentially two easily understood axioms of infinity. One says each element has a
successor and so clearly cannot be ℵ0-categorical. The other is dense linear order.
Are there any other ℵ0-categorical axioms of infinity? In more precise terms, must
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every finitely axiomatizable ℵ0-categorical theory with no finite models have the
strict order property?
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