Perturbations, deformations, and variations (and “near-misses") in geometry, physics, and number theory
HTML articles powered by AMS MathViewer
- by B. Mazur PDF
- Bull. Amer. Math. Soc. 41 (2004), 307-336 Request permission
References
- V. I. Arnol′d, Catastrophe theory, 3rd ed., Springer-Verlag, Berlin, 1992. Translated from the Russian by G. S. Wassermann; Based on a translation by R. K. Thomas. MR 1178935, DOI 10.1007/978-3-642-58124-3
- V. I. Arnol′d, Topological invariants of plane curves and caustics, University Lecture Series, vol. 5, American Mathematical Society, Providence, RI, 1994. Dean Jacqueline B. Lewis Memorial Lectures presented at Rutgers University, New Brunswick, New Jersey. MR 1286249, DOI 10.1090/ulect/005
- F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, Deformation theory and quantization. I. Deformations of symplectic structures, Ann. Physics 111 (1978), no. 1, 61–110. MR 496157, DOI 10.1016/0003-4916(78)90224-5
- Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modularity of elliptic curves over $\mathbf Q$: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843–939. MR 1839918, DOI 10.1090/S0894-0347-01-00370-8
- Alberto S. Cattaneo and Giovanni Felder, A path integral approach to the Kontsevich quantization formula, Comm. Math. Phys. 212 (2000), no. 3, 591–611. MR 1779159, DOI 10.1007/s002200000229
- Alain Connes, A short survey of noncommutative geometry, J. Math. Phys. 41 (2000), no. 6, 3832–3866. MR 1768641, DOI 10.1063/1.533329
- Bruce Crauder and Rick Miranda, Quantum cohomology of rational surfaces, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 33–80. MR 1363053, DOI 10.1007/978-1-4612-4264-2_{3}
- P. Deligne, Déformations de l’algèbre des fonctions d’une variété symplectique: comparaison entre Fedosov et De Wilde, Lecomte, Selecta Math. (N.S.) 1 (1995), no. 4, 667–697 (French). MR 1383583, DOI 10.1007/BF01587907
- Marc De Wilde and Pierre B. A. Lecomte, Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys. 7 (1983), no. 6, 487–496. MR 728644, DOI 10.1007/BF00402248
- Robbert Dijkgraaf, Mirror symmetry and elliptic curves, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 149–163. MR 1363055, DOI 10.1007/978-1-4612-4264-2_{5} [Do]Do Doran, C.: Deformation Theory: An Historical Annotated Bibliography, www.math.columbia.edu/ doran/Hist%20Ann%20Bib.pdf
- Noam D. Elkies, Rational points near curves and small nonzero $|x^3-y^2|$ via lattice reduction, Algorithmic number theory (Leiden, 2000) Lecture Notes in Comput. Sci., vol. 1838, Springer, Berlin, 2000, pp. 33–63. MR 1850598, DOI 10.1007/10722028_{2}
- Torsten Ekedahl, Sergei Lando, Michael Shapiro, and Alek Vainshtein, On Hurwitz numbers and Hodge integrals, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 12, 1175–1180 (English, with English and French summaries). MR 1701381, DOI 10.1016/S0764-4442(99)80435-2
- Boris V. Fedosov, A simple geometrical construction of deformation quantization, J. Differential Geom. 40 (1994), no. 2, 213–238. MR 1293654
- C. G. Gibson, Singular points of smooth mappings, Research Notes in Mathematics, vol. 25, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979. MR 533668
- Gert-Martin Greuel, Christoph Lossen, and Eugenii Shustin, Plane curves of minimal degree with prescribed singularities, Invent. Math. 133 (1998), no. 3, 539–580. MR 1645074, DOI 10.1007/s002220050254
- Joe Harris, On the Severi problem, Invent. Math. 84 (1986), no. 3, 445–461. MR 837522, DOI 10.1007/BF01388741
- Masanobu Kaneko and Don Zagier, A generalized Jacobi theta function and quasimodular forms, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 165–172. MR 1363056, DOI 10.1007/978-1-4612-4264-2_{6} [Ka]Ka Kani, E.: The Number of Genus $2$ Covers of an Elliptic Curve, preprint; see: www.ams.org/amsmtgs/210_abstracts/991-14-302.pdf
- Michael Kapovich and John J. Millson, On the deformation theory of representations of fundamental groups of compact hyperbolic $3$-manifolds, Topology 35 (1996), no. 4, 1085–1106. MR 1404926, DOI 10.1016/0040-9383(95)00060-7
- Maxim Kontsevich, Enumeration of rational curves via torus actions, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 335–368. MR 1363062, DOI 10.1007/978-1-4612-4264-2_{1}2 [Ko 2]Ko 2 Kontsevich, M.: Deformation Quantization of Poisson Manifolds, I. Preprint q-alg/9709040 (September 1997) [La]La Lagrange, J.-L.: Mécanique Analytique, Gauthier-Villars, Paris (1888)
- François Loeser, Déformations de courbes planes (d’après Severi et Harris), Astérisque 152-153 (1987), 4, 187–205 (1988) (French). Séminaire Bourbaki, Vol. 1986/87. MR 936855
- B. Mazur, An “infinite fern” in the universal deformation space of Galois representations, Collect. Math. 48 (1997), no. 1-2, 155–193. Journées Arithmétiques (Barcelona, 1995). MR 1464022
- Gary Cornell, Joseph H. Silverman, and Glenn Stevens (eds.), Modular forms and Fermat’s last theorem, Springer-Verlag, New York, 1997. Papers from the Instructional Conference on Number Theory and Arithmetic Geometry held at Boston University, Boston, MA, August 9–18, 1995. MR 1638473, DOI 10.1007/978-1-4612-1974-3 [M-R-Y]M-R-Y McLellan, B., Roth, M., Yui, N.: Generating Functions Counting Simply Ramified Covers, preprint, Nov. 2003
- Felix E. Browder (ed.), The mathematical heritage of Henri Poincaré. Part 1, Proceedings of Symposia in Pure Mathematics, vol. 39, American Mathematical Society, Providence, RI, 1983. MR 720055, DOI 10.1090/pspum/039.1 [R]R Riemann, B.: Theorie der Abel’schen Functionen, pp. 88-144 in The Collected Works of Bernhard Riemann, Ed: Weber, H., Dover (1953) [Ru]Ru Rudd, R.: The string partition function for QCD on the Torus, hep-th/9407176 [S]S Severi, F.: Vorlesung über Algebraische Geometrie, Teubner (1921)
- Pierre Deligne, Pavel Etingof, Daniel S. Freed, Lisa C. Jeffrey, David Kazhdan, John W. Morgan, David R. Morrison, and Edward Witten (eds.), Quantum fields and strings: a course for mathematicians. Vol. 1, 2, American Mathematical Society, Providence, RI; Institute for Advanced Study (IAS), Princeton, NJ, 1999. Material from the Special Year on Quantum Field Theory held at the Institute for Advanced Study, Princeton, NJ, 1996–1997. MR 1701618
- René Thom, Stabilité structurelle et morphogénèse, Mathematical Physics Monograph Series, W. A. Benjamin, Inc., Reading, Mass., 1972 (French). Essai d’une théorie générale des modèles. MR 0488155
- Oscar Zariski, Collected papers. Vol. I: Foundations of algebraic geometry and resolution of singularities, Mathematicians of Our Time, Vol. 2, MIT Press, Cambridge, Mass.-London, 1972. Edited by H. Hironaka and D. Mumford. MR 0505100
Additional Information
- B. Mazur
- Affiliation: Department of Mathematics, Harvard University, One Oxford Street, Cambridge, Massachusetts 02138-2901
- MR Author ID: 121915
- ORCID: 0000-0002-1748-2953
- Email: mazur@math.harvard.edu
- Received by editor(s): February 19, 2004
- Published electronically: April 16, 2004
- Additional Notes: I wish to thank Curt McMullen and Noam Elkies for helpful comments on an early draft, and Stephanie Yang and Ivan Petrakiev for providing the illustrations
- © Copyright 2004 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 41 (2004), 307-336
- MSC (2000): Primary 11Jxx, 14Bxx, 32Gxx
- DOI: https://doi.org/10.1090/S0273-0979-04-01024-9
- MathSciNet review: 2058289
Dedicated: In memory of René Thom