Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Erik M. Alfsen and Frederic W. Shultz
Title: State spaces of operator algebras: Basic theory, orientations, and C*-products
Additional book information: Birkhäuser Boston, Boston, MA, 2001, xii + 350 pp., ISBN 0-8176-3890-3, $69.95$

Authors: Erik M. Alfsen and Frederic W. Shultz
Title: Geometry of state spaces of operator algebras
Additional book information: Birkhäuser Boston, Boston, MA, 2003, xiv + 467 pp., ISBN 0-8176-4319-2, $74.95$

References [Enhancements On Off] (What's this?)

  • Erik M. Alfsen and Frederic W. Shultz, State spaces of Jordan algebras, Acta Math. 140 (1978), no. 3-4, 155–190. MR 472949, DOI 10.1007/BF02392307
  • Erik M. Alfsen, Harald Hanche-Olsen, and Frederic W. Schultz, State spaces of $C^{\ast }$-algebras, Acta Math. 144 (1980), no. 3-4, 267–305. MR 573454, DOI 10.1007/BF02392126
  • John C. Baez, The octonions, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 2, 145–205. MR 1886087, DOI 10.1090/S0273-0979-01-00934-X
  • Ola Bratteli and Derek W. Robinson, Operator algebras and quantum statistical mechanics. 2, 2nd ed., Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997. Equilibrium states. Models in quantum statistical mechanics. MR 1441540, DOI 10.1007/978-3-662-03444-6
  • A. Connes, A survey of foliations and operator algebras, Operator algebras and applications, Part 1 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 521–628. MR 679730
  • Joachim Cuntz and Wolfgang Krieger, A class of $C^{\ast }$-algebras and topological Markov chains, Invent. Math. 56 (1980), no. 3, 251–268. MR 561974, DOI 10.1007/BF01390048
  • 7.
    J. Dixmier, Anneaux d'opérateurs et représentations des groupes, Séminaire Bourbaki, Vol. 1, Exp. No. 40, pp. 331-336, Soc. Math. France, Paris, 1995.
    8.
    G. G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Monographs and Texts in Physics and Astronomy, Wiley-Interscience, New York, 1972.
  • Bruno Iochum and Frederic W. Shultz, Normal state spaces of Jordan and von Neumann algebras, J. Functional Analysis 50 (1983), no. 3, 317–328. MR 695418, DOI 10.1016/0022-1236(83)90008-3
  • Vaughan F. R. Jones, Subfactors and knots, CBMS Regional Conference Series in Mathematics, vol. 80, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1991. MR 1134131, DOI 10.1090/cbms/080
  • C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
  • G. G. Kasparov, Equivariant $KK$-theory and the Novikov conjecture, Invent. Math. 91 (1988), no. 1, 147–201. MR 918241, DOI 10.1007/BF01404917
  • G. G. Kasparov and G. Skandalis, Groups acting on buildings, operator $K$-theory, and Novikov’s conjecture, $K$-Theory 4 (1991), no. 4, 303–337. MR 1115824, DOI 10.1007/BF00533989
  • Wilhelm Kaup, Jordan algebras and holomorphy, Functional analysis, holomorphy, and approximation theory (Proc. Sem., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1978) Lecture Notes in Math., vol. 843, Springer, Berlin, 1981, pp. 341–365. MR 610837
  • N. P. Landsman, Quantization as a functor, Quantization, Poisson brackets and beyond (Manchester, 2001) Contemp. Math., vol. 315, Amer. Math. Soc., Providence, RI, 2002, pp. 9–24. MR 1958827, DOI 10.1090/conm/315/05471
  • N. Christopher Phillips, Continuous-trace $C^*$-algebras not isomorphic to their opposite algebras, Internat. J. Math. 12 (2001), no. 3, 263–275. MR 1841515, DOI 10.1142/S0129167X01000642
  • Ángel Rodríguez-Palacios, Jordan structures in analysis, Jordan algebras (Oberwolfach, 1992) de Gruyter, Berlin, 1994, pp. 97–186. MR 1293318
  • Robert M. Wald, Quantum field theory in curved spacetime and black hole thermodynamics, Chicago Lectures in Physics, University of Chicago Press, Chicago, IL, 1994. MR 1302174

  • Review Information:

    Reviewer: Nik Weaver
    Affiliation: Washington University
    Email: nweaver@math.wustl.edu
    Journal: Bull. Amer. Math. Soc. 41 (2004), 535-539
    Published electronically: April 28, 2004
    Review copyright: © Copyright 2004 American Mathematical Society