Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: R. S. Cantrell and C. Cosner
Title: Spatial ecology via reaction-diffusion equations
Additional book information: John Wiley & Sons Ltd., Chichester, UK, 2003, 428 pp., ISBN 0-471-49301-5, $155.00$

References [Enhancements On Off] (What's this?)

  • Geoffrey Butler and Paul Waltman, Persistence in dynamical systems, J. Differential Equations 63 (1986), no. 2, 255–263. MR 848269, DOI 10.1016/0022-0396(86)90049-5
  • Geoffrey Butler, H. I. Freedman, and Paul Waltman, Uniformly persistent systems, Proc. Amer. Math. Soc. 96 (1986), no. 3, 425–430. MR 822433, DOI 10.1090/S0002-9939-1986-0822433-4
  • Robert Stephen Cantrell, Chris Cosner, and Vivian Hutson, Permanence in ecological systems with spatial heterogeneity, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), no. 3, 533–559. MR 1226616, DOI 10.1017/S0308210500025877
  • Michael G. Crandall and Paul H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis 8 (1971), 321–340. MR 0288640, DOI 10.1016/0022-1236(71)90015-2
  • Jack K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR 941371, DOI 10.1090/surv/025
  • Jack K. Hale and Paul Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal. 20 (1989), no. 2, 388–395. MR 982666, DOI 10.1137/0520025
  • Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244
  • Peter Hess and Alan C. Lazer, On an abstract competition model and applications, Nonlinear Anal. 16 (1991), no. 11, 917–940. MR 1106994, DOI 10.1016/0362-546X(91)90097-K
  • Morris W. Hirsch, Differential equations and convergence almost everywhere in strongly monotone semiflows, Nonlinear partial differential equations (Durham, N.H., 1982) Contemp. Math., vol. 17, Amer. Math. Soc., Providence, R.I., 1983, pp. 267–285. MR 706104
  • 10.
    M. W. Hirsch and H. L. Smith, Monotone Dynamical Systems, in preparation.
  • Morris W. Hirsch, Hal L. Smith, and Xiao-Qiang Zhao, Chain transitivity, attractivity, and strong repellors for semidynamical systems, J. Dynam. Differential Equations 13 (2001), no. 1, 107–131. MR 1822214, DOI 10.1023/A:1009044515567
  • Josef Hofbauer and Karl Sigmund, Evolutionary games and population dynamics, Cambridge University Press, Cambridge, 1998. MR 1635735, DOI 10.1017/CBO9781139173179
  • S. B. Hsu, H. L. Smith, and Paul Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Trans. Amer. Math. Soc. 348 (1996), no. 10, 4083–4094. MR 1373638, DOI 10.1090/S0002-9947-96-01724-2
  • V. Hutson, A theorem on average Liapunov functions, Monatsh. Math. 98 (1984), no. 4, 267–275. MR 776353, DOI 10.1007/BF01540776
  • Vivian Hutson and Klaus Schmitt, Permanence and the dynamics of biological systems, Math. Biosci. 111 (1992), no. 1, 1–71. MR 1175114, DOI 10.1016/0025-5564(92)90078-B
  • Olga Ladyzhenskaya, Attractors for semigroups and evolution equations, Lezioni Lincee. [Lincei Lectures], Cambridge University Press, Cambridge, 1991. MR 1133627, DOI 10.1017/CBO9780511569418
  • Xing Liang and Jifa Jiang, Discrete infinite-dimensional type-$K$ monotone dynamical systems and time-periodic reaction-diffusion systems, J. Differential Equations 189 (2003), no. 1, 318–354. MR 1968324, DOI 10.1016/S0022-0396(02)00062-1
  • Hiroshi Matano, Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1984), no. 3, 645–673. MR 731522
  • Robert M. May and Warren J. Leonard, Nonlinear aspects of competition between three species, SIAM J. Appl. Math. 29 (1975), no. 2, 243–253. MR 392035, DOI 10.1137/0129022
  • Sebastian J. Schreiber, Criteria for $C^r$ robust permanence, J. Differential Equations 162 (2000), no. 2, 400–426. MR 1751711, DOI 10.1006/jdeq.1999.3719
  • J. Hofbauer, P. Schuster, K. Sigmund, and R. Wolff, Dynamical systems under constant organization. II. Homogeneous growth functions of degree $p=2$, SIAM J. Appl. Math. 38 (1980), no. 2, 282–304. MR 564015, DOI 10.1137/0138025
  • Hal L. Smith, Monotone dynamical systems, Mathematical Surveys and Monographs, vol. 41, American Mathematical Society, Providence, RI, 1995. An introduction to the theory of competitive and cooperative systems. MR 1319817
  • 23.
    H. L. Smith, Dynamics of competition, Mathematics Inspired by Biology, Springer Lecture Notes in Math. 1714 (1999), 191-240.
  • Hal L. Smith and Horst R. Thieme, Convergence for strongly order-preserving semiflows, SIAM J. Math. Anal. 22 (1991), no. 4, 1081–1101. MR 1112067, DOI 10.1137/0522070
  • H. L. Smith and H. R. Thieme, Stable coexistence and bi-stability for competitive systems on ordered Banach spaces, J. Differential Equations 176 (2001), no. 1, 195–222. MR 1861187, DOI 10.1006/jdeq.2001.3981
  • Horst R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model), SIAM J. Math. Anal. 24 (1993), no. 2, 407–435. MR 1205534, DOI 10.1137/0524026
  • Yi Wang and Jifa Jiang, The general properties of discrete-time competitive dynamical systems, J. Differential Equations 176 (2001), no. 2, 470–493. MR 1866283, DOI 10.1006/jdeq.2001.3989
  • 28.
    X.-Q. Zhao, Dynamical Systems in Population Biology, CMS Books in Mathematics, Springer, New York, 2003.
  • Hal L. Smith and Xiao-Qiang Zhao, Robust persistence for semidynamical systems, Proceedings of the Third World Congress of Nonlinear Analysts, Part 9 (Catania, 2000), 2001, pp. 6169–6179. MR 1971507, DOI 10.1016/S0362-546X(01)00678-2

  • Review Information:

    Reviewer: H. L. Smith
    Affiliation: Arizona State University
    Email: halsmith@asu.edu
    Journal: Bull. Amer. Math. Soc. 41 (2004), 551-557
    Published electronically: June 17, 2004
    Review copyright: © Copyright 2004 American Mathematical Society