A survey of entropy methods for partial differential equations
HTML articles powered by AMS MathViewer
- by Lawrence C. Evans PDF
- Bull. Amer. Math. Soc. 41 (2004), 409-438 Request permission
References
-
[AJP]AJP American Journal of Physics, Theme issue on Thermal and Statistical Physics, 67, December, 1999.
- A. L. Bertozzi, A. Münch, and M. Shearer, Undercompressive waves in driven thin film flow: theory, computation, and experiment, Trends in mathematical physics (Knoxville, TN, 1998) AMS/IP Stud. Adv. Math., vol. 13, Amer. Math. Soc., Providence, RI, 1999, pp. 43–68. MR 1708749, DOI 10.1090/amsip/013/04
- Clifford Ambrose Truesdell III and Subramanyam Bharatha, The concepts and logic of classical thermodynamics as a theory of heat engines, Texts and Monographs in Physics, Springer-Verlag, New York-Heidelberg, 1977. Rigorously constructed upon the foundation laid by S. Carnot and F. Reech. MR 0471650
- Christopher Boucher, Richard S. Ellis, and Bruce Turkington, Derivation of maximum entropy principles in two-dimensional turbulence via large deviations, J. Statist. Phys. 98 (2000), no. 5-6, 1235–1278. MR 1751700, DOI 10.1023/A:1018671813486
- Kenneth A. Brakke, The motion of a surface by its mean curvature, Mathematical Notes, vol. 20, Princeton University Press, Princeton, N.J., 1978. MR 0485012
- L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), no. 6, 771–831. MR 673830, DOI 10.1002/cpa.3160350604 [C]C H. Callen, Thermodynamics and an Introduction to Thermostatistics (2nd ed.), Wiley, 1985.
- J. A. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani, and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math. 133 (2001), no. 1, 1–82. MR 1853037, DOI 10.1007/s006050170032
- Bernard D. Coleman and Walter Noll, The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rational Mech. Anal. 13 (1963), 167–178. MR 153153, DOI 10.1007/BF01262690
- Bernard D. Coleman, David R. Owen, and James Serrin, The second law of thermodynamics for systems with approximate cycles, Arch. Rational Mech. Anal. 77 (1981), no. 2, 103–142. MR 633211, DOI 10.1007/BF00250620
- M. G. Crandall, L. C. Evans, and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282 (1984), no. 2, 487–502. MR 732102, DOI 10.1090/S0002-9947-1984-0732102-X
- Michael G. Crandall and Pierre-Louis Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), no. 1, 1–42. MR 690039, DOI 10.1090/S0002-9947-1983-0690039-8
- W. A. Day, Entropy and partial differential equations, Pitman Research Notes in Mathematics Series, vol. 295, Longman Scientific & Technical, Harlow, 1993. MR 1413296
- W. A. Day and M. Šilhavý, Efficiency and the existence of entropy in classical thermodynamics, Arch. Rational. Mech. Anal. 66 (1977), no. 1, 73–81. MR 0449196, DOI 10.1007/BF00250852
- Amir Dembo and Ofer Zeitouni, Large deviations techniques and applications, Jones and Bartlett Publishers, Boston, MA, 1993. MR 1202429
- Bruce Turkington, Andrew Majda, Kyle Haven, and Mark DiBattista, Statistical equilibrium predictions of jets and spots on Jupiter, Proc. Natl. Acad. Sci. USA 98 (2001), no. 22, 12346–12350. MR 1858819, DOI 10.1073/pnas.221449898 [D-Ze]D-Ze R. Dittman and M. Zemansky, Heat and Thermodynamics, McGraw–Hill, 1997.
- Klaus Ecker, Regularity theory for mean curvature flow, Progress in Nonlinear Differential Equations and their Applications, vol. 57, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2024995, DOI 10.1007/978-0-8176-8210-1
- Richard S. Ellis, Entropy, large deviations, and statistical mechanics, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 271, Springer-Verlag, New York, 1985. MR 793553, DOI 10.1007/978-1-4613-8533-2
- J. L. Ericksen, Introduction to the thermodynamics of solids, Revised edition, Applied Mathematical Sciences, vol. 131, Springer-Verlag, New York, 1998. MR 1607500, DOI 10.1007/978-1-4612-1614-8
- Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR 1625845
- Lawrence C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), no. 3-4, 359–375. MR 1007533, DOI 10.1017/S0308210500018631 [E-P]E-P L. C. Evans and M. Portilheiro, Irreversibility and hysteresis for a forward–backward diffusion PDE, to appear.
- M. Feinberg and R. Lavine, Thermodynamics based on the Hahn-Banach theorem: the Clausius inequality, Arch. Rational Mech. Anal. 82 (1983), no. 3, 203–293. MR 690294, DOI 10.1007/BF00261935
- Mark Freidlin, Probabilistic approach to the small viscosity asymptotics for Navier-Stokes equations, Proceedings of the Second World Congress of Nonlinear Analysts, Part 7 (Athens, 1996), 1997, pp. 4069–4076. MR 1603550, DOI 10.1016/S0362-546X(97)00122-3
- M. I. Freidlin and A. D. Wentzell, Random perturbations of dynamical systems, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 260, Springer-Verlag, New York, 1984. Translated from the Russian by Joseph Szücs. MR 722136, DOI 10.1007/978-1-4684-0176-9
- Morton E. Gurtin, Thermomechanics of evolving phase boundaries in the plane, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. MR 1402243
- Morton E. Gurtin and William O. Williams, An axiomatic foundation for continuum thermodynamics, Arch. Rational Mech. Anal. 26 (1967), 83–117. MR 214335, DOI 10.1007/BF00285676
- Peter Lax, Shock waves and entropy, Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971) Academic Press, New York, 1971, pp. 603–634. MR 0393870
- Peter D. Lax, Shock waves, increase of entropy and loss of information, Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983) Math. Sci. Res. Inst. Publ., vol. 2, Springer, New York, 1984, pp. 129–171. MR 765233, DOI 10.2172/5648733
- Elliott H. Lieb and Jakob Yngvason, A guide to entropy and the second law of thermodynamics, Notices Amer. Math. Soc. 45 (1998), no. 5, 571–581. MR 1616141
- Peter Li and Shing-Tung Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3-4, 153–201. MR 834612, DOI 10.1007/BF02399203
- Fanghua Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math. 51 (1998), no. 3, 241–257. MR 1488514, DOI 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A
- Pierre-Louis Lions, On Euler equations and statistical physics, Cattedra Galileiana. [Galileo Chair], Scuola Normale Superiore, Classe di Scienze, Pisa, 1998. MR 1657480
- Pierre-Louis Lions, Benoît Perthame, and Panagiotis E. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math. 49 (1996), no. 6, 599–638. MR 1383202, DOI 10.1002/(SICI)1097-0312(199606)49:6<599::AID-CPA2>3.0.CO;2-5
- P.-L. Lions, B. Perthame, and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc. 7 (1994), no. 1, 169–191. MR 1201239, DOI 10.1090/S0894-0347-1994-1201239-3
- P.-L. Lions, B. Perthame, and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and $p$-systems, Comm. Math. Phys. 163 (1994), no. 2, 415–431. MR 1284790
- Tai-Ping Liu and Tong Yang, A new entropy functional for a scalar conservation law, Comm. Pure Appl. Math. 52 (1999), no. 11, 1427–1442. MR 1702712, DOI 10.1002/(SICI)1097-0312(199911)52:11<1427::AID-CPA2>3.0.CO;2-R
- Carlo Marchioro and Mario Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Applied Mathematical Sciences, vol. 96, Springer-Verlag, New York, 1994. MR 1245492, DOI 10.1007/978-1-4612-4284-0
- Andro Mikelić and Raoul Robert, On the equations describing a relaxation toward a statistical equilibrium state in the two-dimensional perfect fluid dynamics, SIAM J. Math. Anal. 29 (1998), no. 5, 1238–1255. MR 1628271, DOI 10.1137/S0036141096306509
- A. Novick-Cohen and R. L. Pego, Stable patterns in a viscous diffusion equation, Trans. Amer. Math. Soc. 324 (1991), no. 1, 331–351. MR 1015926, DOI 10.1090/S0002-9947-1991-1015926-7
- Stanley Osher and James A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988), no. 1, 12–49. MR 965860, DOI 10.1016/0021-9991(88)90002-2
- David R. Owen, A first course in the mathematical foundations of thermodynamics, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1984. MR 725673, DOI 10.1007/978-1-4613-9505-8 [P]P B. Perthame, Kinetic Formulation of Conservation Laws, Oxford University Press, 2002.
- Benoît Perthame and Eitan Tadmor, A kinetic equation with kinetic entropy functions for scalar conservation laws, Comm. Math. Phys. 136 (1991), no. 3, 501–517. MR 1099693
- Mark A. Peterson, Analogy between thermodynamics and mechanics, Amer. J. Phys. 47 (1979), no. 6, 488–490. MR 532721, DOI 10.1119/1.11788
- Mark A. Pinsky, Lectures on random evolution, World Scientific Publishing Co., Inc., River Edge, NJ, 1991. MR 1143780, DOI 10.1142/1328 [Pl]Pl P. I. Plotnikov, Passing to the limit with respect to the viscosity in an equation with variable parabolicity direction, Differential Equations 30 (1994), 614–622.
- Vladimir Scheffer, Hausdorff measure and the Navier-Stokes equations, Comm. Math. Phys. 55 (1977), no. 2, 97–112. MR 510154
- James Serrin, Foundations of classical thermodynamics, Lecture Notes in Mathematics, University of Chicago, Department of Mathematics, Chicago, Ill., 1975. MR 0672251
- James Serrin, Conceptual analysis of the classical second laws of thermodynamics, Arch. Rational Mech. Anal. 70 (1979), no. 4, 355–371. MR 574162, DOI 10.1007/BF00281160
- Bruce Turkington, Statistical equilibrium measures and coherent states in two-dimensional turbulence, Comm. Pure Appl. Math. 52 (1999), no. 7, 781–809. MR 1682816, DOI 10.1002/(SICI)1097-0312(199907)52:7<781::AID-CPA1>3.0.CO;2-C
- D. W. Stroock, An introduction to the theory of large deviations, Universitext, Springer-Verlag, New York, 1984. MR 755154, DOI 10.1007/978-1-4613-8514-1
- Cédric Villani, Topics in optimal transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI, 2003. MR 1964483, DOI 10.1090/gsm/058
- Augusto Visintin, Differential models of hysteresis, Applied Mathematical Sciences, vol. 111, Springer-Verlag, Berlin, 1994. MR 1329094, DOI 10.1007/978-3-662-11557-2
- Robert B. Israel, Convexity in the theory of lattice gases, Princeton Series in Physics, Princeton University Press, Princeton, N.J., 1979. With an introduction by Arthur S. Wightman. MR 517873
Additional Information
- Lawrence C. Evans
- Affiliation: Department of Mathematics, University of California, Berkeley, Berkeley, California 94720-0001
- Received by editor(s): April 1, 2004
- Published electronically: June 25, 2004
- Additional Notes: LCE was supported in part by NSF Grant DMS-0070480 and by the Miller Institute for Basic Research in Science, UC Berkeley
- © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Bull. Amer. Math. Soc. 41 (2004), 409-438
- MSC (2000): Primary 35-02, 35F20, 35K10, 74A15
- DOI: https://doi.org/10.1090/S0273-0979-04-01032-8
- MathSciNet review: 2083636