A tour of the theory of absolutely minimizing functions
HTML articles powered by AMS MathViewer
- by Gunnar Aronsson, Michael G. Crandall and Petri Juutinen PDF
- Bull. Amer. Math. Soc. 41 (2004), 439-505 Request permission
Abstract:
These notes are intended to be a rather complete and self-contained exposition of the theory of absolutely minimizing Lipschitz extensions, presented in detail and in a form accessible to readers without any prior knowledge of the subject. In particular, we improve known results regarding existence via arguments that are simpler than those that can be found in the literature. We present a proof of the main known uniqueness result which is largely self-contained and does not rely on the theory of viscosity solutions. A unifying idea in our approach is the use of cone functions. This elementary geometric device renders the theory versatile and transparent. A number of tools and issues routinely encountered in the theory of elliptic partial differential equations are illustrated here in an especially clean manner, free from burdensome technicalities - indeed, usually free from partial differential equations themselves. These include a priori continuity estimates, the Harnack inequality, Perron’s method for proving existence results, uniqueness and regularity questions, and some basic tools of viscosity solution theory. We believe that our presentation provides a unified summary of the existing theory as well as new results of interest to experts and researchers and, at the same time, a source which can be used for introducing students to some significant analytical tools.References
-
alm Almansa, A., Échantillonage, interpolation et détection. Applications en imagerie satellitaire, Ph.D. thesis, E.N.S. de Cachan (2002).
ar7 Aronsson, G., Hur kan en sandhög se ut? (What is the possible shape of a sandpile?) NORMAT, vol. 13 (1965), 41-44.
- Gunnar Aronsson, Minimization problems for the functional $\textrm {sup}_{x}\,F(x,\,f(x),\,f^{\prime } (x))$, Ark. Mat. 6 (1965), 33–53 (1965). MR 196551, DOI 10.1007/BF02591326
- Gunnar Aronsson, Minimization problems for the functional $\textrm {sup}_{x}\, F(x, f(x),f^\prime (x))$. II, Ark. Mat. 6 (1966), 409–431 (1966). MR 203541, DOI 10.1007/BF02590964
- Gunnar Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551–561 (1967). MR 217665, DOI 10.1007/BF02591928
- Gunnar Aronsson, On the partial differential equation $u_{x}{}^{2}\!u_{xx} +2u_{x}u_{y}u_{xy}+u_{y}{}^{2}\!u_{yy}=0$, Ark. Mat. 7 (1968), 395–425 (1968). MR 237962, DOI 10.1007/BF02590989
- Gunnar Aronsson, Minimization problems for the functional $\textrm {sup}_{x}\,F(x,\,f(x),\,f^{\prime } \,(x))$. III, Ark. Mat. 7 (1969), 509–512. MR 240690, DOI 10.1007/BF02590888
- Gunnar Aronsson, On certain singular solutions of the partial differential equation $u^{2}_{x}u_{xx}+2u_{x}u_{y}u_{xy}+u^{2}_{y}u_{yy}=0$, Manuscripta Math. 47 (1984), no. 1-3, 133–151. MR 744316, DOI 10.1007/BF01174590
- Gunnar Aronsson, Construction of singular solutions to the $p$-harmonic equation and its limit equation for $p=\infty$, Manuscripta Math. 56 (1986), no. 2, 135–158. MR 850366, DOI 10.1007/BF01172152
- G. Aronsson, L. C. Evans, and Y. Wu, Fast/slow diffusion and growing sandpiles, J. Differential Equations 131 (1996), no. 2, 304–335. MR 1419017, DOI 10.1006/jdeq.1996.0166
- Stefan Banach, Wstęp do teorii funkcji rzeczywistych, Monografie Matematyczne, Tom XVII, Polskie Towarzystwo Matematyczne, Warszawa-Wrocław, 1951 (Polish). MR 0043161
- G. Barles and Jérôme Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term, Comm. Partial Differential Equations 26 (2001), no. 11-12, 2323–2337. MR 1876420, DOI 10.1081/PDE-100107824
- E. N. Barron, R. R. Jensen, and C. Y. Wang, The Euler equation and absolute minimizers of $L^\infty$ functionals, Arch. Ration. Mech. Anal. 157 (2001), no. 4, 255–283. MR 1831173, DOI 10.1007/PL00004239
- E. N. Barron, R. R. Jensen, and C. Y. Wang, Lower semicontinuity of $L^\infty$ functionals, Ann. Inst. H. Poincaré C Anal. Non Linéaire 18 (2001), no. 4, 495–517 (English, with English and French summaries). MR 1841130, DOI 10.1016/S0294-1449(01)00070-1 bk Belloni, M., and Kawohl, B., The pseudo-$p$-Laplace eigenvalue problem and viscosity solutions as $p\to \infty$, ESAIM Control Optim. Calc. Var. 10 (2004), 28–52.
- Tilak Bhattacharya, An elementary proof of the Harnack inequality for non-negative infinity-superharmonic functions, Electron. J. Differential Equations (2001), No. 44, 8. MR 1836812
- Tilak Bhattacharya, On the properties of $\infty$-harmonic functions and an application to capacitary convex rings, Electron. J. Differential Equations (2002), No. 101, 22. MR 1938397
- T. Bhattacharya, E. DiBenedetto, and J. Manfredi, Limits as $p\to \infty$ of $\Delta _pu_p=f$ and related extremal problems, Rend. Sem. Mat. Univ. Politec. Torino Special Issue (1989), 15–68 (1991). Some topics in nonlinear PDEs (Turin, 1989). MR 1155453
- Thomas Bieske, On $\infty$-harmonic functions on the Heisenberg group, Comm. Partial Differential Equations 27 (2002), no. 3-4, 727–761. MR 1900561, DOI 10.1081/PDE-120002872
- Thomas Bieske, Viscosity solutions on Grushin-type planes, Illinois J. Math. 46 (2002), no. 3, 893–911. MR 1951247 bie3 Bieske, T., Lipschitz extensions on generalized Grushin spaces, Michigan Math. J. (to appear). bc Bieske, T., and Capogna, L., The Aronsson-Euler equation for absolutely minimizing Lipschitz extensions with respect to Carnot-Carathéodory metrics, Trans. Amer. Math. Soc. (to appear).
- Luis A. Caffarelli and Xavier Cabré, Fully nonlinear elliptic equations, American Mathematical Society Colloquium Publications, vol. 43, American Mathematical Society, Providence, RI, 1995. MR 1351007, DOI 10.1090/coll/043
- Frédéric Cao, Absolutely minimizing Lipschitz extension with discontinuous boundary data, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 6, 563–568 (English, with English and French summaries). MR 1650611, DOI 10.1016/S0764-4442(98)89164-7
- Vicent Caselles, Jean-Michel Morel, and Catalina Sbert, An axiomatic approach to image interpolation, IEEE Trans. Image Process. 7 (1998), no. 3, 376–386. MR 1669524, DOI 10.1109/83.661188 cp Champion, T., and De Pascale, L., A principle of comparison with distance functions for absolute minimizers, preprint. cpp Champion, T., De Pascale, L., and Prinari, F., $\Gamma$-convergence and absolute minimizers for supremal functionals, ESAIM Control Optim. Calc. Var. (to appear).
- Michael G. Crandall, An efficient derivation of the Aronsson equation, Arch. Ration. Mech. Anal. 167 (2003), no. 4, 271–279. MR 1981858, DOI 10.1007/s00205-002-0236-3
- M. G. Crandall, L. C. Evans, and R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differential Equations 13 (2001), no. 2, 123–139. MR 1861094, DOI 10.1007/s005260000065
- Michael G. Crandall and L. C. Evans, A remark on infinity harmonic functions, Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Viña del Mar-Valparaiso, 2000) Electron. J. Differ. Equ. Conf., vol. 6, Southwest Texas State Univ., San Marcos, TX, 2001, pp. 123–129. MR 1804769
- Michael G. Crandall and Pierre-Louis Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), no. 1, 1–42. MR 690039, DOI 10.1090/S0002-9947-1983-0690039-8
- Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 1–67. MR 1118699, DOI 10.1090/S0273-0979-1992-00266-5
- Michael G. Crandall and Jianying Zhang, Another way to say harmonic, Trans. Amer. Math. Soc. 355 (2003), no. 1, 241–263. MR 1928087, DOI 10.1090/S0002-9947-02-03055-6 cg Czipszer, J., and Gehér, L., Extension of functions satisfying a Lipschitz condition, Acta Math. Acad. Sci. Hungar. 6 (1955), 213–220. MR0071493 (17:136b)
- Lawrence C. Evans, Estimates for smooth absolutely minimizing Lipschitz extensions, Electron. J. Differential Equations (1993), No. 03, approx. 9 pp. (electronic only). MR 1241488
- Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Avner Friedman, Foundations of modern analysis, Dover Publications, Inc., New York, 1982. Reprint of the 1970 original. MR 663003
- Nobuyoshi Fukagai, Masayuki Ito, and Kimiaki Narukawa, Limit as $p\to \infty$ of $p$-Laplace eigenvalue problems and $L^\infty$-inequality of the Poincaré type, Differential Integral Equations 12 (1999), no. 2, 183–206. MR 1672746 gas Gaspari, T., The infinity Laplacian in infinite dimensions, Calc. Var. Partial Differential Equations (to appear).
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364
- Enrico Giusti, Direct methods in the calculus of variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. MR 1962933, DOI 10.1142/9789812795557
- Juha Heinonen, Tero Kilpeläinen, and Olli Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. MR 1207810
- Toshihiro Ishibashi and Shigeaki Koike, On fully nonlinear PDEs derived from variational problems of $L^p$ norms, SIAM J. Math. Anal. 33 (2001), no. 3, 545–569. MR 1871409, DOI 10.1137/S0036141000380000
- Ulf Janfalk, Behaviour in the limit, as $p\to \infty$, of minimizers of functionals involving $p$-Dirichlet integrals, SIAM J. Math. Anal. 27 (1996), no. 2, 341–360. MR 1377478, DOI 10.1137/S0036141093252619
- Robert Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Rational Mech. Anal. 101 (1988), no. 1, 1–27. MR 920674, DOI 10.1007/BF00281780
- Robert Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal. 123 (1993), no. 1, 51–74. MR 1218686, DOI 10.1007/BF00386368
- Petri Juutinen, Minimization problems for Lipschitz functions via viscosity solutions, Ann. Acad. Sci. Fenn. Math. Diss. 115 (1998), 53. Dissertation, University of Jyväskulä, Jyväskulä, 1998. MR 1632063
- Petri Juutinen, Absolutely minimizing Lipschitz extensions on a metric space, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 1, 57–67. MR 1884349
- Petri Juutinen, Peter Lindqvist, and Juan J. Manfredi, The $\infty$-eigenvalue problem, Arch. Ration. Mech. Anal. 148 (1999), no. 2, 89–105. MR 1716563, DOI 10.1007/s002050050157
- Peter Lindqvist and Juan J. Manfredi, The Harnack inequality for $\infty$-harmonic functions, Electron. J. Differential Equations (1995), No. 04, approx. 5 pp.}, review= MR 1322829,
- Peter Lindqvist and Juan Manfredi, Note on $\infty$-superharmonic functions, Rev. Mat. Univ. Complut. Madrid 10 (1997), no. 2, 471–480. MR 1605682
- Peter Lindqvist, Juan Manfredi, and Eero Saksman, Superharmonicity of nonlinear ground states, Rev. Mat. Iberoamericana 16 (2000), no. 1, 17–28. MR 1768532, DOI 10.4171/RMI/269
- Juan Manfredi, Arshak Petrosyan, and Henrik Shahgholian, A free boundary problem for $\infty$-Laplace equation, Calc. Var. Partial Differential Equations 14 (2002), no. 3, 359–384. MR 1899452, DOI 10.1007/s005260100107 mc McShane, E. J., Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), 837-842.
- V. A. Mil′man, Lipschitz extensions of linearly bounded functions, Mat. Sb. 189 (1998), no. 8, 67–92 (Russian, with Russian summary); English transl., Sb. Math. 189 (1998), no. 7-8, 1179–1203. MR 1669631, DOI 10.1070/SM1998v189n08ABEH000340
- V. A. Mil′man, Absolutely minimal extensions of functions on metric spaces, Mat. Sb. 190 (1999), no. 6, 83–110 (Russian, with Russian summary); English transl., Sb. Math. 190 (1999), no. 5-6, 859–885. MR 1719573, DOI 10.1070/SM1999v190n06ABEH000409 reich Reich, S., Review of “Geometry of Banach spaces, duality mappings and nonlinear problems" by Ioana Cioranescu, Bull. Amer. Math. Soc. 26 (N.S.) (1992), 367-370.
- Edi Rosset, A lower bound for the gradient of $\infty$-harmonic functions, Electron. J. Differential Equations (1996), No. 02, approx. 6 pp.}, review= MR 1371219,
- Edi Rosset, Symmetry and convexity of level sets of solutions to the infinity Laplace’s equation, Electron. J. Differential Equations (1998), No. 34, 12. MR 1656591 savin Savin, O., $C^1$ regularity for infinity harmonic functions in two dimensions, preprint. wa Wang, C., The Aronsson equation for absolute minimizers of $L^\infty$-functionals associated with vector fields satisfying Hörmander’s condition, preprint (2003).
- Hassler Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), no. 1, 63–89. MR 1501735, DOI 10.1090/S0002-9947-1934-1501735-3 wu Wu, Y., Absolute minimizers in Finsler metrics, Ph. D. dissertation, UC Berkeley, 1995. yu Yu, Y., Sufficiency of Aronsson-Euler equations without zeroth order terms, preprint.
Additional Information
- Gunnar Aronsson
- Affiliation: Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden
- Email: guaro@mai.liu.se
- Michael G. Crandall
- Affiliation: Department of Mathematics, University of California, Santa Barbara, Santa Barbara, California 93106
- Email: crandall@math.ucsb.edu
- Petri Juutinen
- Affiliation: Department of Mathematics and Statistics, P.O. Box 35, FIN-40014 University of Jyväskylä, Finland
- Email: peanju@maths.jyu.fi
- Received by editor(s): July 18, 2003
- Received by editor(s) in revised form: May 24, 2004
- Published electronically: August 2, 2004
- Additional Notes: “Absolutely minimizing" has other meanings besides the one herein. We might more properly say “absolutely minimizing in the Lipschitz sense" instead, but prefer to abbreviate.
The third author is supported by the Academy of Finland, project #80566. - © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Bull. Amer. Math. Soc. 41 (2004), 439-505
- MSC (2000): Primary 35J70, 49K20, 35B50
- DOI: https://doi.org/10.1090/S0273-0979-04-01035-3
- MathSciNet review: 2083637