## Recent progress on the Poincaré conjecture and the classification of 3-manifolds

HTML articles powered by AMS MathViewer

- by John W. Morgan PDF
- Bull. Amer. Math. Soc.
**42**(2005), 57-78 Request permission

## References

- Yu. Burago, M. Gromov, and G. Perel′man,
*A. D. Aleksandrov spaces with curvatures bounded below*, Uspekhi Mat. Nauk**47**(1992), no. 2(284), 3–51, 222 (Russian, with Russian summary); English transl., Russian Math. Surveys**47**(1992), no. 2, 1–58. MR**1185284**, DOI 10.1070/RM1992v047n02ABEH000877 - Jeff Cheeger and Mikhael Gromov,
*Collapsing Riemannian manifolds while keeping their curvature bounded. I*, J. Differential Geom.**23**(1986), no. 3, 309–346. MR**852159**
CM T. Colding and W. Minicozzi, “Estimates for the extinction time for the Ricci flow on certain $3$-manifolds and a question of Perelman," arXiv.math.DG/0308090, August 25, 2003.
- Daryl Cooper, Craig D. Hodgson, and Steven P. Kerckhoff,
*Three-dimensional orbifolds and cone-manifolds*, MSJ Memoirs, vol. 5, Mathematical Society of Japan, Tokyo, 2000. With a postface by Sadayoshi Kojima. MR**1778789** - Richard S. Hamilton,
*Three-manifolds with positive Ricci curvature*, J. Differential Geometry**17**(1982), no. 2, 255–306. MR**664497** - Richard S. Hamilton,
*The Harnack estimate for the Ricci flow*, J. Differential Geom.**37**(1993), no. 1, 225–243. MR**1198607** - Richard S. Hamilton,
*The formation of singularities in the Ricci flow*, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993) Int. Press, Cambridge, MA, 1995, pp. 7–136. MR**1375255** - Richard S. Hamilton,
*Four-manifolds with positive isotropic curvature*, Comm. Anal. Geom.**5**(1997), no. 1, 1–92. MR**1456308**, DOI 10.4310/CAG.1997.v5.n1.a1 - Richard S. Hamilton,
*Non-singular solutions of the Ricci flow on three-manifolds*, Comm. Anal. Geom.**7**(1999), no. 4, 695–729. MR**1714939**, DOI 10.4310/CAG.1999.v7.n4.a2 - John Hempel,
*$3$-Manifolds*, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. Ann. of Math. Studies, No. 86. MR**0415619**
K H. Kneser, “Geschlossene Flächen in drei-dimesnionalen Mannigfaltigkeiten," Jahresber. Deutsch. Math. Verbein - John Milnor,
*Groups which act on $S^n$ without fixed points*, Amer. J. Math.**79**(1957), 623–630. MR**90056**, DOI 10.2307/2372566 - John Milnor,
*Towards the Poincaré conjecture and the classification of 3-manifolds*, Notices Amer. Math. Soc.**50**(2003), no. 10, 1226–1233. MR**2009455** - G. Perelman,
*Spaces with curvature bounded below*, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 517–525. MR**1403952**
P2 G. Perelman, “The entropy formula for the Ricci flow and its geometric applications," arXiv.math.DG/0211159, November 11, 2002.
P3 G. Perelman, “Ricci flow with surgery on three-manifolds," arXiv.math.DG/0303109, March 10, 2003.
P4 G. Perelman, “Finite extinction time for the solutions to the Ricci flow on certain three-manifolds," arXiv.math.DG/0307245, July 17, 2003.
- Henri Poincaré,
*Œuvres. Tome VI*, Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics], Éditions Jacques Gabay, Sceaux, 1996 (French). Géométrie. Analysis situs (topologie). [Geometry. Analysis situs (topology)]; Reprint of the 1953 edition. MR**1401792** - Peter Scott,
*The geometries of $3$-manifolds*, Bull. London Math. Soc.**15**(1983), no. 5, 401–487. MR**705527**, DOI 10.1112/blms/15.5.401
Se H. Seifert, “Topologie dreidimensionaler gefaserter Räume," Acta Math. - Wan-Xiong Shi,
*Deforming the metric on complete Riemannian manifolds*, J. Differential Geom.**30**(1989), no. 1, 223–301. MR**1001277** - Takashi Shioya and Takao Yamaguchi,
*Collapsing three-manifolds under a lower curvature bound*, J. Differential Geom.**56**(2000), no. 1, 1–66. MR**1863020**
SY1 T. Shioya and T. Yamaguchi, “Volume collapsed three-manifolds with a lower curvature bound," arXiv.math.DG/0304472, April 15, 2003.
- William P. Thurston,
*Three-dimensional geometry and topology. Vol. 1*, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy. MR**1435975**, DOI 10.1515/9781400865321

**38**(1929), 248-260.

**60**(1933), 147-288.

## Additional Information

**John W. Morgan**- Affiliation: Department of Mathematics, Columbia University, New York, New York 10027
- Email: jm@math.columbia.edu
- Received by editor(s): June 11, 2004
- Received by editor(s) in revised form: September 1, 2004
- Published electronically: October 29, 2004
- Additional Notes: Written version of a talk presented on January 9, 2004, in the “Current Events in Mathematics" session at the AMS national meeting in Phoenix, AZ
- © Copyright 2004 American Mathematical Society
- Journal: Bull. Amer. Math. Soc.
**42**(2005), 57-78 - MSC (2000): Primary 57M50, 57M27, 58J35
- DOI: https://doi.org/10.1090/S0273-0979-04-01045-6
- MathSciNet review: 2115067