What is known about unit cubes
HTML articles powered by AMS MathViewer
- by Chuanming Zong PDF
- Bull. Amer. Math. Soc. 42 (2005), 181-211 Request permission
Abstract:
Unit cubes, from any point of view, are among the simplest and the most important objects in $n$-dimensional Euclidean space. In fact, as one will see from this survey, they are not simple at all. On the one hand, the known results about them have been achieved by employing complicated machineries from Number Theory, Group Theory, Probability Theory, Matrix Theory, Hyperbolic Geometry, Combinatorics, etc.; on the other hand, the answers for many basic problems about them are still missing. In addition, the geometry of unit cubes does serve as a meeting point for several applied subjects such as Design Theory, Coding Theory, etc. The purpose of this article is to figure out what is known about the unit cubes and what do we want to know about them.References
- Fernando Affentranger and Rolf Schneider, Random projections of regular simplices, Discrete Comput. Geom. 7 (1992), no. 3, 219–226. MR 1149653, DOI 10.1007/BF02187839
- S. S. Agaian, Hadamard matrices and their applications, Lecture Notes in Mathematics, vol. 1168, Springer-Verlag, Berlin, 1985. MR 818740, DOI 10.1007/BFb0101073
- Oswin Aichholzer, Extremal properties of $0/1$-polytopes of dimension 5, Polytopes—combinatorics and computation (Oberwolfach, 1997) DMV Sem., vol. 29, Birkhäuser, Basel, 2000, pp. 111–130. MR 1785295
- Martin Aigner and Günter M. Ziegler, Proofs from The Book, 3rd ed., Springer-Verlag, Berlin, 2004. Including illustrations by Karl H. Hofmann. MR 2014872, DOI 10.1007/978-3-662-05412-3
- Keith Ball, Cube slicing in $\textbf {R}^n$, Proc. Amer. Math. Soc. 97 (1986), no. 3, 465–473. MR 840631, DOI 10.1090/S0002-9939-1986-0840631-0
- Keith Ball, Logarithmically concave functions and sections of convex sets in $\textbf {R}^n$, Studia Math. 88 (1988), no. 1, 69–84. MR 932007, DOI 10.4064/sm-88-1-69-84
- Keith Ball, Volumes of sections of cubes and related problems, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 251–260. MR 1008726, DOI 10.1007/BFb0090058
- Keith Ball, An elementary introduction to modern convex geometry, Flavors of geometry, Math. Sci. Res. Inst. Publ., vol. 31, Cambridge Univ. Press, Cambridge, 1997, pp. 1–58. MR 1491097, DOI 10.2977/prims/1195164788
- I. Bárány and L. Lovász, Borsuk’s theorem and the number of facets of centrally symmetric polytopes, Acta Math. Acad. Sci. Hungar. 40 (1982), no. 3-4, 323–329. MR 686332, DOI 10.1007/BF01903592
- Imre Bárány and Attila Pór, On $0$-$1$ polytopes with many facets, Adv. Math. 161 (2001), no. 2, 209–228. MR 1851645, DOI 10.1006/aima.2001.1991 barG. Barba, Intorno al teorema di Hadamard sui determinanti a valore massimo, Giorn. Mat. Battaglia 71 (1933), 70–86.
- A. Below, U. Brehm, J. A. De Loera, and J. Richter-Gebert, Minimal simplicial dissections and triangulations of convex 3-polytopes, Discrete Comput. Geom. 24 (2000), no. 1, 35–48. MR 1765232, DOI 10.1007/s004540010058
- L. J. Billera, R. Cushman, and J. A. Sanders, The Stanley decomposition of the harmonic oscillator, Nederl. Akad. Wetensch. Indag. Math. 50 (1988), no. 4, 375–393. MR 976522
- Louis J. Billera and A. Sarangarajan, All $0$-$1$ polytopes are traveling salesman polytopes, Combinatorica 16 (1996), no. 2, 175–188. MR 1401891, DOI 10.1007/BF01844844
- C. Borell, Convex set functions in $d$-space, Period. Math. Hungar. 6 (1975), no. 2, 111–136. MR 404559, DOI 10.1007/BF02018814
- Károly Böröczky Jr. and Martin Henk, Random projections of regular polytopes, Arch. Math. (Basel) 73 (1999), no. 6, 465–473. MR 1725183, DOI 10.1007/s000130050424
- Herm Jan Brascamp and Elliott H. Lieb, Best constants in Young’s inequality, its converse, and its generalization to more than three functions, Advances in Math. 20 (1976), no. 2, 151–173. MR 412366, DOI 10.1016/0001-8708(76)90184-5
- Joel Brenner and Larry Cummings, The Hadamard maximum determinant problem, Amer. Math. Monthly 79 (1972), 626–630. MR 301030, DOI 10.2307/2317092
- Mark N. Broadie and Richard W. Cottle, A note on triangulating the $5$-cube, Discrete Math. 52 (1984), no. 1, 39–49. MR 765283, DOI 10.1016/0012-365X(84)90102-X
- G. D. Chakerian and P. Filliman, The measures of the projections of a cube, Studia Sci. Math. Hungar. 21 (1986), no. 1-2, 103–110. MR 898848
- G. F. Clements and B. Lindström, A sequence of $(\pm 1)-$determinants with large values, Proc. Amer. Math. Soc. 16 (1965), 548–550. MR 178001, DOI 10.1090/S0002-9939-1965-0178001-X
- K. Corrádi and S. Szabó, A combinatorial approach for Keller’s conjecture, Period. Math. Hungar. 21 (1990), no. 2, 95–100. MR 1070948, DOI 10.1007/BF01946848
- Richard W. Cottle, Minimal triangulation of the $4$-cube, Discrete Math. 40 (1982), no. 1, 25–29. MR 676709, DOI 10.1016/0012-365X(82)90185-6
- L. Dalla, D. G. Larman, P. Mani-Levitska, and C. Zong, The blocking numbers of convex bodies, Discrete Comput. Geom. 24 (2000), no. 2-3, 267–277. The Branko Grünbaum birthday issue. MR 1758049, DOI 10.1007/s004540010032
- L. Danzer and B. Grünbaum, Über zwei Probleme bezüglich konvexer Körper von P. Erdős und von V. L. Klee, Math. Z. 79 (1962), 95–99 (German). MR 138040, DOI 10.1007/BF01193107
- P. Delsarte, Bounds for unrestricted codes, by linear programming, Philips Res. Rep. 27 (1972), 272–289. MR 314545
- P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. 10 (1973), vi+97. MR 384310
- Aryeh Dvoretzky, Some results on convex bodies and Banach spaces, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960) Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961, pp. 123–160. MR 0139079
- Aryeh Dvoretzky, Some near-sphericity results, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 203–210. MR 0158308
- M. E. Dyer, Z. Füredi, and C. McDiarmid, Volumes spanned by random points in the hypercube, Random Structures Algorithms 3 (1992), no. 1, 91–106. MR 1139489, DOI 10.1002/rsa.3240030107
- Hartmut Ehlich, Determinantenabschätzungen für binäre Matrizen, Math. Z. 83 (1964), 123–132 (German). MR 160792, DOI 10.1007/BF01111249
- Hartmut Ehlich, Determinantenabschätzung für binäre Matrizen mit $n\equiv 3\,\textrm {mod\,}4$, Math. Z. 84 (1964), 438–447 (German). MR 168573, DOI 10.1007/BF01109911
- L. Fejes Tóth, Regular figures, A Pergamon Press Book, The Macmillan Company, New York, 1964. MR 0165423
- Tamás Fleiner, Volker Kaibel, and Günter Rote, Upper bounds on the maximal number of facets of 0/1-polytopes, European J. Combin. 21 (2000), no. 1, 121–130. Combinatorics of polytopes. MR 1737332, DOI 10.1006/eujc.1999.0326 furP. Furtwängler, Über Gitter konstanter Dichte, Monatsh. Math. Phys. 43 (1936), 281–288. gilE.N. Gilbert, A comparison of signaling alphabets, Bell System Tech. J. 31 (1952), 504–522.
- N. A. Grigor′ev, Regular simplexes inscribed into a cube and Hadamard matrices, Trudy Mat. Inst. Steklov. 152 (1980), 87–88, 237 (Russian). Geometry of positive quadratic forms. MR 603815
- P. Gritzmann, V. Klee, and D. Larman, Largest $j$-simplices in $n$-polytopes, Discrete Comput. Geom. 13 (1995), no. 3-4, 477–515. MR 1318791, DOI 10.1007/BF02574058
- Peter Gruber, Zur Charakterisierung konvexer Körper. Über einen Satz von Rogers und Shephard. II, Math. Ann. 184 (1970), 79–105 (German). MR 256266, DOI 10.1007/BF01350311
- W. Gruner, Einlagerung des regulären $n$-Simplex in den $n$-dimensionalen Würfel, Comment. Math. Helv. 12 (1939/40), 149–152 (German). MR 1205, DOI 10.1007/BF01620643
- Uffe Haagerup and Hans J. Munkholm, Simplices of maximal volume in hyperbolic $n$-space, Acta Math. 147 (1981), no. 1-2, 1–11. MR 631085, DOI 10.1007/BF02392865 hadJ. Hadamard, Résolution d’une question relativ aux déterminants, Bull. Sci. Math. 28 (1893), 240–246. had2H. Hadwiger, Ungelöste Probleme Nr. 20, Elem. Math. 12 (1957), 121.
- H. Hadwiger, Gitterperiodische Punktmengen und Isoperimetrie, Monatsh. Math. 76 (1972), 410–418 (German). MR 324550, DOI 10.1007/BF01297304
- Mark Haiman, A simple and relatively efficient triangulation of the $n$-cube, Discrete Comput. Geom. 6 (1991), no. 4, 287–289. MR 1098809, DOI 10.1007/BF02574690
- Georg Hajós, Über einfache und mehrfache Bedeckung des $n$-dimensionalen Raumes mit einem Würfelgitter, Math. Z. 47 (1941), 427–467 (German). MR 6425, DOI 10.1007/BF01180974
- G. Hajós, Sur la factorisation des groupes abéliens, Časopis Pěst. Mat. Fys. 74 (1949), 157–162 (1950) (French, with Czech summary). MR 0045727 halP. Hall, Jr., Combinatorial Theory, Blaisdell, Waltham, Mass., 1966.
- Douglas Hensley, Slicing the cube in $\textbf {R}^{n}$ and probability (bounds for the measure of a central cube slice in $\textbf {R}^{n}$ by probability methods), Proc. Amer. Math. Soc. 73 (1979), no. 1, 95–100. MR 512066, DOI 10.1090/S0002-9939-1979-0512066-8
- Douglas Hensley, Slicing convex bodies—bounds for slice area in terms of the body’s covariance, Proc. Amer. Math. Soc. 79 (1980), no. 4, 619–625. MR 572315, DOI 10.1090/S0002-9939-1980-0572315-5
- Matthew Hudelson, Victor Klee, and David Larman, Largest $j$-simplices in $d$-cubes: some relatives of the Hadamard maximum determinant problem, Proceedings of the Fourth Conference of the International Linear Algebra Society (Rotterdam, 1994), 1996, pp. 519–598. MR 1400454, DOI 10.1016/0024-3795(95)00541-2
- Robert B. Hughes and Michael R. Anderson, A triangulation of the $6$-cube with $308$ simplices, Discrete Math. 117 (1993), no. 1-3, 253–256. MR 1226146, DOI 10.1016/0012-365X(93)90339-U
- Robert B. Hughes, Minimum-cardinality triangulations of the $d$-cube for $d=5$ and $d=6$, Discrete Math. 118 (1993), no. 1-3, 75–118. MR 1230056, DOI 10.1016/0012-365X(93)90055-X
- Robert B. Hughes, Lower bounds on cube simplexity, Discrete Math. 133 (1994), no. 1-3, 123–138. MR 1298968, DOI 10.1016/0012-365X(94)90020-5
- Robert B. Hughes and Michael R. Anderson, Simplexity of the cube, Discrete Math. 158 (1996), no. 1-3, 99–150. MR 1411113, DOI 10.1016/0012-365X(95)00075-8
- David B. Jaffe, Optimal binary linear codes of length $\leq 30$, Discrete Math. 223 (2000), no. 1-3, 135–155. MR 1782044, DOI 10.1016/S0012-365X(99)00135-1 janH. Jansen, Lückenlose Ausfüllung des $R_n$ mit gitterförmig angeordneten $n$-dimensionalen Quadern, Dissertation, Kiel, 1909.
- Fritz John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, Inc., New York, N. Y., 1948, pp. 187–204. MR 0030135
- Jeff Kahn, János Komlós, and Endre Szemerédi, On the probability that a random $\pm 1$-matrix is singular, J. Amer. Math. Soc. 8 (1995), no. 1, 223–240. MR 1260107, DOI 10.1090/S0894-0347-1995-1260107-2
- Marek Kanter, Unimodality and dominance for symmetric random vectors, Trans. Amer. Math. Soc. 229 (1977), 65–85. MR 445580, DOI 10.1090/S0002-9947-1977-0445580-7 kel1O.H. Keller, Über die lückenlose Einfüllung des Raumes mit Würfeln, J. reine angew. Math. 163 (1930), 231–248. kel2O.H. Keller, Ein Satz über die lückenlose Erfüllung des $5$- und $6$-dimensional Raumes mit Würfeln, J. reine angew. Math. 177 (1937), 61–64.
- Mihail Kolountzakis, Lattice tilings by cubes: whole, notched and extended, Electron. J. Combin. 5 (1998), Research Paper 14, 11. MR 1605065
- U. H. Kortenkamp, J. Richter-Gebert, A. Sarangarajan, and G. M. Ziegler, Extremal properties of $0/1$-polytopes, Discrete Comput. Geom. 17 (1997), no. 4, 439–448. Dedicated to Jörg M. Wills. MR 1455692, DOI 10.1007/PL00009303
- Gerhard Kowalewski, Einführung in die Determinantentheorie einschliesslich der Fredholmschen Determinanten, Walter de Gruyter & Co., Berlin, 1954 (German). 4te Aufl. MR 0064003
- Jeffrey C. Lagarias and Peter W. Shor, Keller’s cube-tiling conjecture is false in high dimensions, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 2, 279–283. MR 1155280, DOI 10.1090/S0273-0979-1992-00318-X
- J. C. Lagarias and P. W. Shor, Cube-tilings of $\textbf {R}^n$ and nonlinear codes, Discrete Comput. Geom. 11 (1994), no. 4, 359–391. MR 1273224, DOI 10.1007/BF02574014
- D. G. Larman and P. Mani, Almost ellipsoidal sections and projections of convex bodies, Math. Proc. Cambridge Philos. Soc. 77 (1975), 529–546. MR 377697, DOI 10.1017/S0305004100051355
- Carl W. Lee, Triangulating the $d$-cube, Discrete geometry and convexity (New York, 1982) Ann. New York Acad. Sci., vol. 440, New York Acad. Sci., New York, 1985, pp. 205–211. MR 809208, DOI 10.1111/j.1749-6632.1985.tb14555.x
- Carl W. Lee, Subdivisions and triangulations of polytopes, Handbook of discrete and computational geometry, CRC Press Ser. Discrete Math. Appl., CRC, Boca Raton, FL, 1997, pp. 271–290. MR 1730170
- Kurt Leichtweiss, Über die affine Exzentrizität konvexer Körper, Arch. Math. 10 (1959), 187–199 (German). MR 107843, DOI 10.1007/BF01240785
- Y. Lonke, On random sections of the cube, Discrete Comput. Geom. 23 (2000), no. 2, 157–169. MR 1739603, DOI 10.1007/PL00009493
- John Mackey, A cube tiling of dimension eight with no facesharing, Discrete Comput. Geom. 28 (2002), no. 2, 275–279. MR 1920144, DOI 10.1007/s00454-002-2801-9
- Patrick Scott Mara, Triangulations for the cube, J. Combinatorial Theory Ser. A 20 (1976), no. 2, 170–177. MR 406838, DOI 10.1016/0097-3165(76)90014-5
- Robert J. McEliece, Eugene R. Rodemich, Howard Rumsey Jr., and Lloyd R. Welch, New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities, IEEE Trans. Inform. Theory IT-23 (1977), no. 2, 157–166. MR 439403, DOI 10.1109/tit.1977.1055688
- Peter McMullen, Volumes of projections of unit cubes, Bull. London Math. Soc. 16 (1984), no. 3, 278–280. MR 738519, DOI 10.1112/blms/16.3.278
- A. I. Medyanik, A regular simplex inscribed in a cube, half-circulant Hadamard matrices, and Gaussian sums, Mat. Fiz. Anal. Geom. 8 (2001), no. 1, 58–81 (Russian, with English, Russian and Ukrainian summaries). MR 1846358 min1H. Minkowski, Geometrie der Zahlen, Teubner, Leipzig, 1896. min2H. Minkowski, Diophantische Approximationen, Teubner, Leipzig, 1907.
- M. G. Neubauer and A. J. Radcliffe, The maximum determinant of $\pm 1$ matrices, Linear Algebra Appl. 257 (1997), 289–306. MR 1441716, DOI 10.1016/S0024-3795(96)00147-4
- Michael G. Neubauer, William Watkins, and Joel Zeitlin, Maximal $j$-simplices in the real $d$-dimensional unit cube, J. Combin. Theory Ser. A 80 (1997), no. 1, 1–12. MR 1472104, DOI 10.1006/jcta.1997.2789
- David Orden and Francisco Santos, Asymptotically efficient triangulations of the $d$-cube, Discrete Comput. Geom. 30 (2003), no. 4, 509–528. MR 2013970, DOI 10.1007/s00454-003-2845-5
- M. I. Ostrovskii, Minimal-volume shadows of cubes, J. Funct. Anal. 176 (2000), no. 2, 317–330. MR 1784418, DOI 10.1006/jfan.2000.3641 palR.E.A.C, Paley, On orthogonal matrices, J. Math. Phys. 12 (1933), 311–320.
- Oskar Perron, Über lückenlose Ausfüllung des $n$-dimensionalen Raumes durch kongruente Würfel, Math. Z. 46 (1940), 1–26 (German). MR 3041, DOI 10.1007/BF01181421
- Oskar Perron, Modulartige lückenlose Ausfüllung des $R_n$ mit kongruenten Würfeln. I, Math. Ann. 117 (1940), 415–447 (German). MR 3042, DOI 10.1007/BF01450026
- V. S. Pless, W. C. Huffman, and R. A. Brualdi (eds.), Handbook of coding theory. Vol. I, II, North-Holland, Amsterdam, 1998. MR 1667936
- András Prékopa, On logarithmic concave measures and functions, Acta Sci. Math. (Szeged) 34 (1973), 335–343. MR 404557
- L. Rédei, Die neue Theorie der endlichen abelschen Gruppen und Verallgemeinerung des Hauptsatzes von Hajós, Acta Math. Acad. Sci. Hungar. 16 (1965), 329–373 (German, with Russian summary). MR 186729, DOI 10.1007/BF01904843
- Raphael M. Robinson, Multiple tilings of $n$-dimensional space by unit cubes, Math. Z. 166 (1979), no. 3, 225–264. MR 526466, DOI 10.1007/BF01214145
- Richard W. Cottle, Minimal triangulation of the $4$-cube, Discrete Math. 40 (1982), no. 1, 25–29. MR 676709, DOI 10.1016/0012-365X(82)90185-6
- John F. Sallee, A note on minimal triangulations of an $n$-cube, Discrete Appl. Math. 4 (1982), no. 3, 211–215. MR 675850, DOI 10.1016/0166-218X(82)90041-5
- John F. Sallee, The middle-cut triangulations of the $n$-cube, SIAM J. Algebraic Discrete Methods 5 (1984), no. 3, 407–419. MR 752044, DOI 10.1137/0605039
- K. W. Schmidt, Lower bounds for maximal $(0,\,1)$-determinants, SIAM J. Appl. Math. 19 (1970), 440–442. MR 265382, DOI 10.1137/0119042 schmT. Schmidt, Über die Zerlegung des $n$-dimensionalen Raumes in gitterförmig angeordnete Würfeln, Schr. Math. Semin. U. Institut angew. Math. Univ. Berlin 1 (1933), 186–212.
- G. C. Shephard, Combinatorial properties of associated zonotopes, Canadian J. Math. 26 (1974), 302–321. MR 362054, DOI 10.4153/CJM-1974-032-5
- N. J. A. Sloane, Error-correcting codes and invariant theory: new applications of a nineteenth-century technique, Amer. Math. Monthly 84 (1977), no. 2, 82–107. MR 424398, DOI 10.2307/2319929
- Warren D. Smith, A lower bound for the simplexity of the $n$-cube via hyperbolic volumes, European J. Combin. 21 (2000), no. 1, 131–137. Combinatorics of polytopes. MR 1737333, DOI 10.1006/eujc.1999.0327
- Sherman K. Stein, A symmetric star body that tiles but not as a lattice, Proc. Amer. Math. Soc. 36 (1972), 543–548. MR 319058, DOI 10.1090/S0002-9939-1972-0319058-6
- S. K. Stein, Algebraic tiling, Amer. Math. Monthly 81 (1974), 445–462. MR 340063, DOI 10.2307/2318582
- Sherman K. Stein and Sándor Szabó, Algebra and tiling, Carus Mathematical Monographs, vol. 25, Mathematical Association of America, Washington, DC, 1994. Homomorphisms in the service of geometry. MR 1311249
- S. Szabó, On mosaics consisting of multidimensional crosses, Acta Math. Acad. Sci. Hungar. 38 (1981), no. 1-4, 191–203. MR 634580, DOI 10.1007/BF01917533
- Sándor Szabó, Multiple tilings by cubes with no shared faces, Aequationes Math. 25 (1982), no. 1, 83–89. MR 716380, DOI 10.1007/BF02189600
- S. Szabó, A reduction of Keller’s conjecture, Period. Math. Hungar. 17 (1986), no. 4, 265–277. MR 866636, DOI 10.1007/BF01848388
- Sándor Szabó, Cube tilings as contributions of algebra to geometry, Beiträge Algebra Geom. 34 (1993), no. 1, 63–75. MR 1239279 thuW.P. Thurston, The Geometry and Topology of $3$-manifolds, Lecture Notes from Princeton University, 1977.
- Jeffrey D. Vaaler, A geometric inequality with applications to linear forms, Pacific J. Math. 83 (1979), no. 2, 543–553. MR 557952
- Jacobus Hendricus van Lint, Introduction to coding theory, Problemy Matematicheskogo Analiza [Problems in Mathematical Analysis], vol. 8, Springer-Verlag, New York-Berlin, 1982. MR 658134 varR.R. Varshamov, Estimate of the number of signals in error correcting codes, Dokl. Akad. Nauk SSSR 117 (1957), 739–741.
- John Williamson, Determinants whose elements are 0 and 1, Amer. Math. Monthly 53 (1946), 427–434. MR 17261, DOI 10.2307/2306240
- M. Wojtas, On Hadamard’s inequality for the determinants of order non-divisible by $4$, Colloq. Math. 12 (1964), 73–83. MR 168574, DOI 10.4064/cm-12-1-73-83
- Mieko Yamada, Some new series of Hadamard matrices, J. Austral. Math. Soc. Ser. A 46 (1989), no. 3, 371–383. MR 987555
- C. H. Yang, Some designs for maximal $(+1,\,-1)$-determinant of order $n\equiv 2\,(\textrm {mod}\,4)$, Math. Comp. 20 (1966), 147–148. MR 188093, DOI 10.1090/S0025-5718-1966-0188093-9
- C. H. Yang, A construction for maximal $(+1,\,-1)$-matrix of order $54$, Bull. Amer. Math. Soc. 72 (1966), 293. MR 188239, DOI 10.1090/S0002-9904-1966-11497-0
- Günter M. Ziegler, Lectures on $0/1$-polytopes, Polytopes—combinatorics and computation (Oberwolfach, 1997) DMV Sem., vol. 29, Birkhäuser, Basel, 2000, pp. 1–41. MR 1785291
- Chuanming Zong, Strange phenomena in convex and discrete geometry, Universitext, Springer-Verlag, New York, 1996. MR 1416567, DOI 10.1007/978-1-4613-8481-6 zon2C. Zong, The Cube – A Window to Convex and Discrete Geometry, Cambridge University Press, in press.
Similar Articles
- Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 05A15, 05B20, 05B25, 05B45, 11H31, 11J13, 15A33, 20K01, 28A25, 52B05, 52C20, 52C22
- Retrieve articles in all journals with MSC (2000): 05A15, 05B20, 05B25, 05B45, 11H31, 11J13, 15A33, 20K01, 28A25, 52B05, 52C20, 52C22
Additional Information
- Chuanming Zong
- Affiliation: School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
- Email: cmzong@math.pku.edu.cn
- Received by editor(s): June 9, 2004
- Published electronically: January 26, 2005
- Additional Notes: This work was supported by the National Science Foundation of China, 973 Project and a special grant from Peking University.
- © Copyright 2005 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 42 (2005), 181-211
- MSC (2000): Primary 05A15, 05B20, 05B25, 05B45, 11H31, 11J13, 15A33, 20K01, 28A25, 52B05, 52C20, 52C22
- DOI: https://doi.org/10.1090/S0273-0979-05-01050-5
- MathSciNet review: 2133310