What is known about unit cubes
Author:
Chuanming Zong
Journal:
Bull. Amer. Math. Soc. 42 (2005), 181-211
MSC (2000):
Primary 05A15, 05B20, 05B25, 05B45, 11H31, 11J13, 15A33, 20K01, 28A25, 52B05, 52C20, 52C22
DOI:
https://doi.org/10.1090/S0273-0979-05-01050-5
Published electronically:
January 26, 2005
MathSciNet review:
2133310
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Unit cubes, from any point of view, are among the simplest and the most important objects in -dimensional Euclidean space. In fact, as one will see from this survey, they are not simple at all. On the one hand, the known results about them have been achieved by employing complicated machineries from Number Theory, Group Theory, Probability Theory, Matrix Theory, Hyperbolic Geometry, Combinatorics, etc.; on the other hand, the answers for many basic problems about them are still missing. In addition, the geometry of unit cubes does serve as a meeting point for several applied subjects such as Design Theory, Coding Theory, etc. The purpose of this article is to figure out what is known about the unit cubes and what do we want to know about them.
- 1. Fernando Affentranger and Rolf Schneider, Random projections of regular simplices, Discrete Comput. Geom. 7 (1992), no. 3, 219–226. MR 1149653, https://doi.org/10.1007/BF02187839
- 2. S. S. Agaian, Hadamard matrices and their applications, Lecture Notes in Mathematics, vol. 1168, Springer-Verlag, Berlin, 1985. MR 818740
- 3. Oswin Aichholzer, Extremal properties of 0/1-polytopes of dimension 5, Polytopes—combinatorics and computation (Oberwolfach, 1997) DMV Sem., vol. 29, Birkhäuser, Basel, 2000, pp. 111–130. MR 1785295
- 4. Martin Aigner and Günter M. Ziegler, Proofs from The Book, 3rd ed., Springer-Verlag, Berlin, 2004. Including illustrations by Karl H. Hofmann. MR 2014872
- 5. Keith Ball, Cube slicing in 𝑅ⁿ, Proc. Amer. Math. Soc. 97 (1986), no. 3, 465–473. MR 840631, https://doi.org/10.1090/S0002-9939-1986-0840631-0
- 6. Keith Ball, Logarithmically concave functions and sections of convex sets in 𝑅ⁿ, Studia Math. 88 (1988), no. 1, 69–84. MR 932007, https://doi.org/10.4064/sm-88-1-69-84
- 7. Keith Ball, Volumes of sections of cubes and related problems, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 251–260. MR 1008726, https://doi.org/10.1007/BFb0090058
- 8. Keith Ball, An elementary introduction to modern convex geometry, Flavors of geometry, Math. Sci. Res. Inst. Publ., vol. 31, Cambridge Univ. Press, Cambridge, 1997, pp. 1–58. MR 1491097, https://doi.org/10.2977/prims/1195164788
- 9. I. Bárány and L. Lovász, Borsuk’s theorem and the number of facets of centrally symmetric polytopes, Acta Math. Acad. Sci. Hungar. 40 (1982), no. 3-4, 323–329. MR 686332, https://doi.org/10.1007/BF01903592
- 10. Imre Bárány and Attila Pór, On 0-1 polytopes with many facets, Adv. Math. 161 (2001), no. 2, 209–228. MR 1851645, https://doi.org/10.1006/aima.2001.1991
- 11. G. Barba, Intorno al teorema di Hadamard sui determinanti a valore massimo, Giorn. Mat. Battaglia 71 (1933), 70-86.
- 12. A. Below, U. Brehm, J. A. De Loera, and J. Richter-Gebert, Minimal simplicial dissections and triangulations of convex 3-polytopes, Discrete Comput. Geom. 24 (2000), no. 1, 35–48. MR 1765232, https://doi.org/10.1007/s004540010058
- 13. L. J. Billera, R. Cushman, and J. A. Sanders, The Stanley decomposition of the harmonic oscillator, Nederl. Akad. Wetensch. Indag. Math. 50 (1988), no. 4, 375–393. MR 976522
- 14. Louis J. Billera and A. Sarangarajan, All 0-1 polytopes are traveling salesman polytopes, Combinatorica 16 (1996), no. 2, 175–188. MR 1401891, https://doi.org/10.1007/BF01844844
- 15. C. Borell, Convex set functions in 𝑑-space, Period. Math. Hungar. 6 (1975), no. 2, 111–136. MR 404559, https://doi.org/10.1007/BF02018814
- 16. Károly Böröczky Jr. and Martin Henk, Random projections of regular polytopes, Arch. Math. (Basel) 73 (1999), no. 6, 465–473. MR 1725183, https://doi.org/10.1007/s000130050424
- 17. Herm Jan Brascamp and Elliott H. Lieb, Best constants in Young’s inequality, its converse, and its generalization to more than three functions, Advances in Math. 20 (1976), no. 2, 151–173. MR 412366, https://doi.org/10.1016/0001-8708(76)90184-5
- 18. Joel Brenner and Larry Cummings, The Hadamard maximum determinant problem, Amer. Math. Monthly 79 (1972), 626–630. MR 301030, https://doi.org/10.2307/2317092
- 19. Mark N. Broadie and Richard W. Cottle, A note on triangulating the 5-cube, Discrete Math. 52 (1984), no. 1, 39–49. MR 765283, https://doi.org/10.1016/0012-365X(84)90102-X
- 20. G. D. Chakerian and P. Filliman, The measures of the projections of a cube, Studia Sci. Math. Hungar. 21 (1986), no. 1-2, 103–110. MR 898848
- 21. G. F. Clements and B. Lindström, A sequence of (±1)-determinants with large values, Proc. Amer. Math. Soc. 16 (1965), 548–550. MR 178001, https://doi.org/10.1090/S0002-9939-1965-0178001-X
- 22. K. Corrádi and S. Szabó, A combinatorial approach for Keller’s conjecture, Period. Math. Hungar. 21 (1990), no. 2, 95–100. MR 1070948, https://doi.org/10.1007/BF01946848
- 23. Richard W. Cottle, Minimal triangulation of the 4-cube, Discrete Math. 40 (1982), no. 1, 25–29. MR 676709, https://doi.org/10.1016/0012-365X(82)90185-6
- 24. L. Dalla, D. G. Larman, P. Mani-Levitska, and C. Zong, The blocking numbers of convex bodies, Discrete Comput. Geom. 24 (2000), no. 2-3, 267–277. The Branko Grünbaum birthday issue. MR 1758049, https://doi.org/10.1007/s004540010032
- 25. L. Danzer and B. Grünbaum, Über zwei Probleme bezüglich konvexer Körper von P. Erdős und von V. L. Klee, Math. Z. 79 (1962), 95–99 (German). MR 138040, https://doi.org/10.1007/BF01193107
- 26. P. Delsarte, Bounds for unrestricted codes, by linear programming, Philips Res. Rep. 27 (1972), 272–289. MR 314545
- 27. P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. 10 (1973), vi+97. MR 0384310
- 28. Aryeh Dvoretzky, Some results on convex bodies and Banach spaces, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960) Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961, pp. 123–160. MR 0139079
- 29. Aryeh Dvoretzky, Some near-sphericity results, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 203–210. MR 0158308
- 30. M. E. Dyer, Z. Füredi, and C. McDiarmid, Volumes spanned by random points in the hypercube, Random Structures Algorithms 3 (1992), no. 1, 91–106. MR 1139489, https://doi.org/10.1002/rsa.3240030107
- 31. Hartmut Ehlich, Determinantenabschätzungen für binäre Matrizen, Math. Z. 83 (1964), 123–132 (German). MR 160792, https://doi.org/10.1007/BF01111249
- 32. Hartmut Ehlich, Determinantenabschätzung für binäre Matrizen mit 𝑛≡3𝑚𝑜𝑑4, Math. Z. 84 (1964), 438–447 (German). MR 168573, https://doi.org/10.1007/BF01109911
- 33. L. Fejes Tóth, Regular figures, A Pergamon Press Book, The Macmillan Co., New York, 1964. MR 0165423
- 34. Tamás Fleiner, Volker Kaibel, and Günter Rote, Upper bounds on the maximal number of facets of 0/1-polytopes, European J. Combin. 21 (2000), no. 1, 121–130. Combinatorics of polytopes. MR 1737332, https://doi.org/10.1006/eujc.1999.0326
- 35. P. Furtwängler, Über Gitter konstanter Dichte, Monatsh. Math. Phys. 43 (1936), 281-288.
- 36. E.N. Gilbert, A comparison of signaling alphabets, Bell System Tech. J. 31 (1952), 504-522.
- 37. N. A. Grigor′ev, Regular simplexes inscribed into a cube and Hadamard matrices, Trudy Mat. Inst. Steklov. 152 (1980), 87–88, 237 (Russian). Geometry of positive quadratic forms. MR 603815
- 38. P. Gritzmann, V. Klee, and D. Larman, Largest 𝑗-simplices in 𝑛-polytopes, Discrete Comput. Geom. 13 (1995), no. 3-4, 477–515. MR 1318791, https://doi.org/10.1007/BF02574058
- 39. Peter Gruber, Zur Charakterisierung konvexer Körper. Über einen Satz von Rogers und Shephard. II, Math. Ann. 184 (1970), 79–105 (German). MR 256266, https://doi.org/10.1007/BF01350311
- 40. W. Gruner, Einlagerung des regulären 𝑛-Simplex in den 𝑛-dimensionalen Würfel, Comment. Math. Helv. 12 (1939/40), 149–152 (German). MR 1205, https://doi.org/10.1007/BF01620643
- 41. Uffe Haagerup and Hans J. Munkholm, Simplices of maximal volume in hyperbolic 𝑛-space, Acta Math. 147 (1981), no. 1-2, 1–11. MR 631085, https://doi.org/10.1007/BF02392865
- 42. J. Hadamard, Résolution d'une question relativ aux déterminants, Bull. Sci. Math. 28 (1893), 240-246.
- 43. H. Hadwiger, Ungelöste Probleme Nr. 20, Elem. Math. 12 (1957), 121.
- 44. H. Hadwiger, Gitterperiodische Punktmengen und Isoperimetrie, Monatsh. Math. 76 (1972), 410–418 (German). MR 324550, https://doi.org/10.1007/BF01297304
- 45. Mark Haiman, A simple and relatively efficient triangulation of the 𝑛-cube, Discrete Comput. Geom. 6 (1991), no. 4, 287–289. MR 1098809, https://doi.org/10.1007/BF02574690
- 46. Georg Hajós, Über einfache und mehrfache Bedeckung des 𝑛-dimensionalen Raumes mit einem Würfelgitter, Math. Z. 47 (1941), 427–467 (German). MR 6425, https://doi.org/10.1007/BF01180974
- 47. G. Hajós, Sur la factorisation des groupes abéliens, Časopis Pěst. Mat. Fys. 74 (1949), 157–162 (1950) (French, with Czech summary). MR 0045727
- 48. P. Hall, Jr., Combinatorial Theory, Blaisdell, Waltham, Mass., 1966.
- 49. Douglas Hensley, Slicing the cube in 𝑅ⁿ and probability (bounds for the measure of a central cube slice in 𝑅ⁿ by probability methods), Proc. Amer. Math. Soc. 73 (1979), no. 1, 95–100. MR 512066, https://doi.org/10.1090/S0002-9939-1979-0512066-8
- 50. Douglas Hensley, Slicing convex bodies—bounds for slice area in terms of the body’s covariance, Proc. Amer. Math. Soc. 79 (1980), no. 4, 619–625. MR 572315, https://doi.org/10.1090/S0002-9939-1980-0572315-5
- 51. Matthew Hudelson, Victor Klee, and David Larman, Largest 𝑗-simplices in 𝑑-cubes: some relatives of the Hadamard maximum determinant problem, Proceedings of the Fourth Conference of the International Linear Algebra Society (Rotterdam, 1994), 1996, pp. 519–598. MR 1400454, https://doi.org/10.1016/0024-3795(95)00541-2
- 52. Robert B. Hughes and Michael R. Anderson, A triangulation of the 6-cube with 308 simplices, Discrete Math. 117 (1993), no. 1-3, 253–256. MR 1226146, https://doi.org/10.1016/0012-365X(93)90339-U
- 53. Robert B. Hughes, Minimum-cardinality triangulations of the 𝑑-cube for 𝑑=5 and 𝑑=6, Discrete Math. 118 (1993), no. 1-3, 75–118. MR 1230056, https://doi.org/10.1016/0012-365X(93)90055-X
- 54. Robert B. Hughes, Lower bounds on cube simplexity, Discrete Math. 133 (1994), no. 1-3, 123–138. MR 1298968, https://doi.org/10.1016/0012-365X(94)90020-5
- 55. Robert B. Hughes and Michael R. Anderson, Simplexity of the cube, Discrete Math. 158 (1996), no. 1-3, 99–150. MR 1411113, https://doi.org/10.1016/0012-365X(95)00075-8
- 56. David B. Jaffe, Optimal binary linear codes of length ≤30, Discrete Math. 223 (2000), no. 1-3, 135–155. MR 1782044, https://doi.org/10.1016/S0012-365X(99)00135-1
- 57.
H. Jansen, Lückenlose Ausfüllung des
mit gitterförmig angeordneten
-dimensionalen Quadern, Dissertation, Kiel, 1909.
- 58. Fritz John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, Inc., New York, N. Y., 1948, pp. 187–204. MR 0030135
- 59. Jeff Kahn, János Komlós, and Endre Szemerédi, On the probability that a random ±1-matrix is singular, J. Amer. Math. Soc. 8 (1995), no. 1, 223–240. MR 1260107, https://doi.org/10.1090/S0894-0347-1995-1260107-2
- 60. Marek Kanter, Unimodality and dominance for symmetric random vectors, Trans. Amer. Math. Soc. 229 (1977), 65–85. MR 445580, https://doi.org/10.1090/S0002-9947-1977-0445580-7
- 61. O.H. Keller, Über die lückenlose Einfüllung des Raumes mit Würfeln, J. reine angew. Math. 163 (1930), 231-248.
- 62.
O.H. Keller, Ein Satz über die lückenlose Erfüllung des
- und
-dimensional Raumes mit Würfeln, J. reine angew. Math. 177 (1937), 61-64.
- 63. Mihail Kolountzakis, Lattice tilings by cubes: whole, notched and extended, Electron. J. Combin. 5 (1998), Research Paper 14, 11. MR 1605065
- 64. U. H. Kortenkamp, J. Richter-Gebert, A. Sarangarajan, and G. M. Ziegler, Extremal properties of 0/1-polytopes, Discrete Comput. Geom. 17 (1997), no. 4, 439–448. Dedicated to Jörg M. Wills. MR 1455692, https://doi.org/10.1007/PL00009303
- 65. Gerhard Kowalewski, Einführung in die Determinantentheorie einschliesslich der Fredholmschen Determinanten, Walter de Gruyter & Co., Berlin, 1954 (German). 4te Aufl. MR 0064003
- 66. Jeffrey C. Lagarias and Peter W. Shor, Keller’s cube-tiling conjecture is false in high dimensions, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 2, 279–283. MR 1155280, https://doi.org/10.1090/S0273-0979-1992-00318-X
- 67. J. C. Lagarias and P. W. Shor, Cube-tilings of 𝑅ⁿ and nonlinear codes, Discrete Comput. Geom. 11 (1994), no. 4, 359–391. MR 1273224, https://doi.org/10.1007/BF02574014
- 68. D. G. Larman and P. Mani, Almost ellipsoidal sections and projections of convex bodies, Math. Proc. Cambridge Philos. Soc. 77 (1975), 529–546. MR 377697, https://doi.org/10.1017/S0305004100051355
- 69. Carl W. Lee, Triangulating the 𝑑-cube, Discrete geometry and convexity (New York, 1982) Ann. New York Acad. Sci., vol. 440, New York Acad. Sci., New York, 1985, pp. 205–211. MR 809208, https://doi.org/10.1111/j.1749-6632.1985.tb14555.x
- 70. Carl W. Lee, Subdivisions and triangulations of polytopes, Handbook of discrete and computational geometry, CRC Press Ser. Discrete Math. Appl., CRC, Boca Raton, FL, 1997, pp. 271–290. MR 1730170
- 71. Kurt Leichtweiss, Über die affine Exzentrizität konvexer Körper, Arch. Math. 10 (1959), 187–199 (German). MR 107843, https://doi.org/10.1007/BF01240785
- 72. Y. Lonke, On random sections of the cube, Discrete Comput. Geom. 23 (2000), no. 2, 157–169. MR 1739603, https://doi.org/10.1007/PL00009493
- 73. John Mackey, A cube tiling of dimension eight with no facesharing, Discrete Comput. Geom. 28 (2002), no. 2, 275–279. MR 1920144, https://doi.org/10.1007/s00454-002-2801-9
- 74. Patrick Scott Mara, Triangulations for the cube, J. Combinatorial Theory Ser. A 20 (1976), no. 2, 170–177. MR 406838, https://doi.org/10.1016/0097-3165(76)90014-5
- 75. Robert J. McEliece, Eugene R. Rodemich, Howard Rumsey Jr., and Lloyd R. Welch, New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities, IEEE Trans. Inform. Theory IT-23 (1977), no. 2, 157–166. MR 439403, https://doi.org/10.1109/tit.1977.1055688
- 76. Peter McMullen, Volumes of projections of unit cubes, Bull. London Math. Soc. 16 (1984), no. 3, 278–280. MR 738519, https://doi.org/10.1112/blms/16.3.278
- 77. A. I. Medyanik, A regular simplex inscribed in a cube, half-circulant Hadamard matrices, and Gaussian sums, Mat. Fiz. Anal. Geom. 8 (2001), no. 1, 58–81 (Russian, with English, Russian and Ukrainian summaries). MR 1846358
- 78. H. Minkowski, Geometrie der Zahlen, Teubner, Leipzig, 1896.
- 79. H. Minkowski, Diophantische Approximationen, Teubner, Leipzig, 1907.
- 80. M. G. Neubauer and A. J. Radcliffe, The maximum determinant of ±1 matrices, Linear Algebra Appl. 257 (1997), 289–306. MR 1441716, https://doi.org/10.1016/S0024-3795(96)00147-4
- 81. Michael G. Neubauer, William Watkins, and Joel Zeitlin, Maximal 𝑗-simplices in the real 𝑑-dimensional unit cube, J. Combin. Theory Ser. A 80 (1997), no. 1, 1–12. MR 1472104, https://doi.org/10.1006/jcta.1997.2789
- 82. David Orden and Francisco Santos, Asymptotically efficient triangulations of the 𝑑-cube, Discrete Comput. Geom. 30 (2003), no. 4, 509–528. MR 2013970, https://doi.org/10.1007/s00454-003-2845-5
- 83. M. I. Ostrovskii, Minimal-volume shadows of cubes, J. Funct. Anal. 176 (2000), no. 2, 317–330. MR 1784418, https://doi.org/10.1006/jfan.2000.3641
- 84. R.E.A.C, Paley, On orthogonal matrices, J. Math. Phys. 12 (1933), 311-320.
- 85.
Oskar
Perron, Über lückenlose Ausfüllung des
𝑛-dimensionalen Raumes durch kongruente Würfel, Math. Z.
46 (1940), 1–26 (German). MR
3041, https://doi.org/10.1007/BF01181421
Oskar Perron, Über lückenlose Ausfüllung des 𝑛-dimensionalen Raumes durch kongruente Würfel. II, Math. Z. 46 (1940), 161–180 (German). MR 2185, https://doi.org/10.1007/BF01181436 - 86.
Oskar
Perron, Modulartige lückenlose Ausfüllung des
𝑅_{𝑛} mit kongruenten Würfeln. I, Math. Ann.
117 (1940), 415–447 (German). MR
3042, https://doi.org/10.1007/BF01450026
Oskar Perron, Modulartige lückenlose Ausfüllung des 𝑅_{𝑛} mit kongruenten Würfeln. II, Math. Ann. 117 (1941), 609–658 (German). MR 6068, https://doi.org/10.1007/BF01450033 - 87. V. S. Pless, W. C. Huffman, and R. A. Brualdi (eds.), Handbook of coding theory. Vol. I, II, North-Holland, Amsterdam, 1998. MR 1667936
- 88. András Prékopa, On logarithmic concave measures and functions, Acta Sci. Math. (Szeged) 34 (1973), 335–343. MR 404557
- 89. L. Rédei, Die neue Theorie der endlichen abelschen Gruppen und Verallgemeinerung des Hauptsatzes von Hajós, Acta Math. Acad. Sci. Hungar. 16 (1965), 329–373 (German, with Russian summary). MR 186729, https://doi.org/10.1007/BF01904843
- 90. Raphael M. Robinson, Multiple tilings of 𝑛-dimensional space by unit cubes, Math. Z. 166 (1979), no. 3, 225–264. MR 526466, https://doi.org/10.1007/BF01214145
- 91. Richard W. Cottle, Minimal triangulation of the 4-cube, Discrete Math. 40 (1982), no. 1, 25–29. MR 676709, https://doi.org/10.1016/0012-365X(82)90185-6
- 92. John F. Sallee, A note on minimal triangulations of an 𝑛-cube, Discrete Appl. Math. 4 (1982), no. 3, 211–215. MR 675850, https://doi.org/10.1016/0166-218X(82)90041-5
- 93. John F. Sallee, The middle-cut triangulations of the 𝑛-cube, SIAM J. Algebraic Discrete Methods 5 (1984), no. 3, 407–419. MR 752044, https://doi.org/10.1137/0605039
- 94. K. W. Schmidt, Lower bounds for maximal (0,1)-determinants, SIAM J. Appl. Math. 19 (1970), 440–442. MR 265382, https://doi.org/10.1137/0119042
- 95.
T. Schmidt, Über die Zerlegung des
-dimensionalen Raumes in gitterförmig angeordnete Würfeln, Schr. Math. Semin. U. Institut angew. Math. Univ. Berlin 1 (1933), 186-212.
- 96. G. C. Shephard, Combinatorial properties of associated zonotopes, Canadian J. Math. 26 (1974), 302–321. MR 362054, https://doi.org/10.4153/CJM-1974-032-5
- 97. N. J. A. Sloane, Error-correcting codes and invariant theory: new applications of a nineteenth-century technique, Amer. Math. Monthly 84 (1977), no. 2, 82–107. MR 424398, https://doi.org/10.2307/2319929
- 98. Warren D. Smith, A lower bound for the simplexity of the 𝑛-cube via hyperbolic volumes, European J. Combin. 21 (2000), no. 1, 131–137. Combinatorics of polytopes. MR 1737333, https://doi.org/10.1006/eujc.1999.0327
- 99. Sherman K. Stein, A symmetric star body that tiles but not as a lattice, Proc. Amer. Math. Soc. 36 (1972), 543–548. MR 319058, https://doi.org/10.1090/S0002-9939-1972-0319058-6
- 100. S. K. Stein, Algebraic tiling, Amer. Math. Monthly 81 (1974), 445–462. MR 340063, https://doi.org/10.2307/2318582
- 101. Sherman K. Stein and Sándor Szabó, Algebra and tiling, Carus Mathematical Monographs, vol. 25, Mathematical Association of America, Washington, DC, 1994. Homomorphisms in the service of geometry. MR 1311249
- 102. S. Szabó, On mosaics consisting of multidimensional crosses, Acta Math. Acad. Sci. Hungar. 38 (1981), no. 1-4, 191–203. MR 634580, https://doi.org/10.1007/BF01917533
- 103. Sándor Szabó, Multiple tilings by cubes with no shared faces, Aequationes Math. 25 (1982), no. 1, 83–89. MR 716380, https://doi.org/10.1007/BF02189600
- 104. S. Szabó, A reduction of Keller’s conjecture, Period. Math. Hungar. 17 (1986), no. 4, 265–277. MR 866636, https://doi.org/10.1007/BF01848388
- 105. Sándor Szabó, Cube tilings as contributions of algebra to geometry, Beiträge Algebra Geom. 34 (1993), no. 1, 63–75. MR 1239279
- 106.
W.P. Thurston, The Geometry and Topology of
-manifolds, Lecture Notes from Princeton University, 1977.
- 107. Jeffrey D. Vaaler, A geometric inequality with applications to linear forms, Pacific J. Math. 83 (1979), no. 2, 543–553. MR 557952
- 108. Jacobus Hendricus van Lint, Introduction to coding theory, Graduate Texts in Mathematics, vol. 86, Springer-Verlag, New York-Berlin, 1982. Problemy Matematicheskogo Analiza [Problems in Mathematical Analysis], 8. MR 658134
- 109. R.R. Varshamov, Estimate of the number of signals in error correcting codes, Dokl. Akad. Nauk SSSR 117 (1957), 739-741.
- 110. John Williamson, Determinants whose elements are 0 and 1, Amer. Math. Monthly 53 (1946), 427–434. MR 17261, https://doi.org/10.2307/2306240
- 111. M. Wojtas, On Hadamard’s inequality for the determinants of order non-divisible by 4, Colloq. Math. 12 (1964), 73–83. MR 168574, https://doi.org/10.4064/cm-12-1-73-83
- 112. Mieko Yamada, Some new series of Hadamard matrices, J. Austral. Math. Soc. Ser. A 46 (1989), no. 3, 371–383. MR 987555
- 113. C. H. Yang, Some designs for maximal (+1,-1)-determinant of order 𝑛≡2(𝑚𝑜𝑑4), Math. Comp. 20 (1966), 147–148. MR 188093, https://doi.org/10.1090/S0025-5718-1966-0188093-9
- 114. C. H. Yang, A construction for maximal (+1,-1)-matrix of order 54, Bull. Amer. Math. Soc. 72 (1966), 293. MR 188239, https://doi.org/10.1090/S0002-9904-1966-11497-0
- 115. Günter M. Ziegler, Lectures on 0/1-polytopes, Polytopes—combinatorics and computation (Oberwolfach, 1997) DMV Sem., vol. 29, Birkhäuser, Basel, 2000, pp. 1–41. MR 1785291
- 116. Chuanming Zong, Strange phenomena in convex and discrete geometry, Universitext, Springer-Verlag, New York, 1996. MR 1416567
- 117. C. Zong, The Cube - A Window to Convex and Discrete Geometry, Cambridge University Press, in press.
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 05A15, 05B20, 05B25, 05B45, 11H31, 11J13, 15A33, 20K01, 28A25, 52B05, 52C20, 52C22
Retrieve articles in all journals with MSC (2000): 05A15, 05B20, 05B25, 05B45, 11H31, 11J13, 15A33, 20K01, 28A25, 52B05, 52C20, 52C22
Additional Information
Chuanming Zong
Affiliation:
School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
Email:
cmzong@math.pku.edu.cn
DOI:
https://doi.org/10.1090/S0273-0979-05-01050-5
Received by editor(s):
June 9, 2004
Published electronically:
January 26, 2005
Additional Notes:
This work was supported by the National Science Foundation of China, 973 Project and a special grant from Peking University.
Article copyright:
© Copyright 2005
American Mathematical Society