What is motivic measure?
HTML articles powered by AMS MathViewer
- by Thomas C. Hales PDF
- Bull. Amer. Math. Soc. 42 (2005), 119-135
Abstract:
This article gives an exposition of the theory of arithmetic motivic measure, as developed by J. Denef and F. Loeser.References
- Raf Cluckers and François Loeser, Fonctions constructibles et intégration motivique. I, C. R. Math. Acad. Sci. Paris 339 (2004), no. 6, 411–416 (French, with English and French summaries). MR 2092754, DOI 10.1016/j.crma.2004.06.026 CR A. Craw, An introduction to motivic integration, 1999.
- Jan Denef and François Loeser, Motivic Igusa zeta functions, J. Algebraic Geom. 7 (1998), no. 3, 505–537. MR 1618144
- Jan Denef and François Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999), no. 1, 201–232. MR 1664700, DOI 10.1007/s002220050284
- Jan Denef and François Loeser, Definable sets, motives and $p$-adic integrals, J. Amer. Math. Soc. 14 (2001), no. 2, 429–469. MR 1815218, DOI 10.1090/S0894-0347-00-00360-X
- J. Denef and F. Loeser, Motivic integration and the Grothendieck group of pseudo-finite fields, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 13–23. MR 1957016 DLR J. Denef and F. Loeser, On some rational generating series occurring in arithmetic geometry, to appear.
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8 VDG G. van der Geer and B. Moonen, Abelian Varieties, preliminary version of Chapter XI. The Fourier transform and the Chow ring, July 2003, http://turing.wins.uva.nl/~bmoonen/boek/BookAV.html. kont M. Kontsevich, lecture at Orsay, December 1995.
- François Loeser and Julien Sebag, Motivic integration on smooth rigid varieties and invariants of degenerations, Duke Math. J. 119 (2003), no. 2, 315–344. MR 1997948, DOI 10.1215/S0012-7094-03-11924-9
- Eduard Looijenga, Motivic measures, Astérisque 276 (2002), 267–297. Séminaire Bourbaki, Vol. 1999/2000. MR 1886763
- Ernesto Lupercio and Mainak Poddar, The global McKay-Ruan correspondence via motivic integration, Bull. London Math. Soc. 36 (2004), no. 4, 509–515. MR 2069013, DOI 10.1112/S002460930300290X
- Johan Pas, Uniform $p$-adic cell decomposition and local zeta functions, J. Reine Angew. Math. 399 (1989), 137–172. MR 1004136, DOI 10.1515/crll.1989.399.137
- A. J. Scholl, Classical motives, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 163–187. MR 1265529, DOI 10.1090/pspum/055.1/1265529
- Julien Sebag, Intégration motivique sur les schémas formels, Bull. Soc. Math. France 132 (2004), no. 1, 1–54 (French, with English and French summaries). MR 2075915, DOI 10.24033/bsmf.2458
Additional Information
- Thomas C. Hales
- Affiliation: Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Received by editor(s): June 1, 2003
- Published electronically: January 28, 2005
- Additional Notes: Work supported by the NSF
This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA - © Copyright 2005 Thomas C. Hales
- Journal: Bull. Amer. Math. Soc. 42 (2005), 119-135
- MSC (2000): Primary 14G20
- DOI: https://doi.org/10.1090/S0273-0979-05-01053-0
- MathSciNet review: 2133307