Prevalence
Authors:
William Ott and James A. Yorke
Journal:
Bull. Amer. Math. Soc. 42 (2005), 263-290
MSC (2000):
Primary :, 28C10, 28C15, 28C20; Secondary :, 37C20, 37C45
DOI:
https://doi.org/10.1090/S0273-0979-05-01060-8
Published electronically:
March 30, 2005
MathSciNet review:
2149086
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Many problems in mathematics and science require the use of infinite-dimensional spaces. Consequently, there is need for an analogue of the finite-dimensional notions of ‘Lebesgue almost every’ and ‘Lebesgue measure zero’ in the infinite-dimensional setting. The theory of prevalence addresses this need and provides a powerful framework for describing generic behavior in a probabilistic way. We survey the theory and applications of prevalence.
- Proceedings of the International Congress of Mathematicians, Amsterdam, 1954. Vol. 2, Erven P. Noordhoff N. V., Groningen; North-Holland Publishing Co., Amsterdam, 1954. MR 0070535
- Robert M. Anderson and William R. Zame, Genericity with infinitely many parameters, Adv. Theor. Econ. 1 (2001), Art. 1, 64. MR 2002579, DOI https://doi.org/10.2202/1534-5963.1003
- A. Araujo and P. K. Monteiro, Generic nonexistence of equilibria in finance models, J. Math. Econom. 20 (1991), no. 5, 489–499. MR 1112342, DOI https://doi.org/10.1016/0304-4068%2891%2990005-E
- M. Artin and B. Mazur, On periodic points, Ann. of Math. (2) 81 (1965), 82–99. MR 176482, DOI https://doi.org/10.2307/1970384
- A. Ben-Artzi, A. Eden, C. Foias, and B. Nicolaenko, Hölder continuity for the inverse of Mañé’s projection, J. Math. Anal. Appl. 178 (1993), no. 1, 22–29. MR 1231724, DOI https://doi.org/10.1006/jmaa.1993.1288
- B. Birnir and H. A. Hauksson, The basic attractor of the viscous Moore-Greitzer equation, J. Nonlinear Sci. 11 (2001), no. 3, 169–192. MR 1852939, DOI https://doi.org/10.1007/s00332-001-0310-2 Birnir1994a Björn Birnir, Global attractors and basic turbulence, Nonlinear Coherent Structures in Physics and Biology (K.M. Spatschek and F.G. Mertens, eds.), NATO ASI, vol. 329, Springer-Verlag, New York, 1994. Birnir2001 ---, Basic attractors and basic control of nonlinear partial differential equations, Ecmi lecture notes, Chalmers University of Technology and Göteborg University, 2001.
- Björn Birnir and Rainer Grauer, An explicit description of the global attractor of the damped and driven sine-Gordon equation, Comm. Math. Phys. 162 (1994), no. 3, 539–590. MR 1277476
- Jonathan M. Borwein and Warren B. Moors, Null sets and essentially smooth Lipschitz functions, SIAM J. Optim. 8 (1998), no. 2, 309–323. MR 1618798, DOI https://doi.org/10.1137/S1052623496305213
- Jens Peter Reus Christensen, On sets of Haar measure zero in abelian Polish groups, Israel J. Math. 13 (1972), 255–260 (1973). MR 326293, DOI https://doi.org/10.1007/BF02762799
- Darrell Duffie and William Zame, The consumption-based capital asset pricing model, Econometrica 57 (1989), no. 6, 1279–1297. MR 1035113, DOI https://doi.org/10.2307/1913708
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
- Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR 1102677
- Michael Field, Ian Melbourne, and Matthew Nicol, Symmetric attractors for diffeomorphisms and flows, Proc. London Math. Soc. (3) 72 (1996), no. 3, 657–696. MR 1376773, DOI https://doi.org/10.1112/plms/s3-72.3.657
- C. Foias and E. Olson, Finite fractal dimension and Hölder-Lipschitz parametrization, Indiana Univ. Math. J. 45 (1996), no. 3, 603–616. MR 1422098, DOI https://doi.org/10.1512/iumj.1996.45.1326
- Peter K. Friz and James C. Robinson, Smooth attractors have zero “thickness”, J. Math. Anal. Appl. 240 (1999), no. 1, 37–46. MR 1728206, DOI https://doi.org/10.1006/jmaa.1999.6569
- Peter K. Friz and James C. Robinson, Parametrising the attractor of the two-dimensional Navier-Stokes equations with a finite number of nodal values, Phys. D 148 (2001), no. 3-4, 201–220. MR 1820361, DOI https://doi.org/10.1016/S0167-2789%2800%2900179-2
- Jean-Michel Ghidaglia, Martine Marion, and Roger Temam, Generalization of the Sobolev-Lieb-Thirring inequalities and applications to the dimension of attractors, Differential Integral Equations 1 (1988), no. 1, 1–21. MR 920485
- Brian R. Hunt, The prevalence of continuous nowhere differentiable functions, Proc. Amer. Math. Soc. 122 (1994), no. 3, 711–717. MR 1260170, DOI https://doi.org/10.1090/S0002-9939-1994-1260170-X
- Brian R. Hunt and Vadim Yu. Kaloshin, How projections affect the dimension spectrum of fractal measures, Nonlinearity 10 (1997), no. 5, 1031–1046. MR 1473372, DOI https://doi.org/10.1088/0951-7715/10/5/002
- Brian R. Hunt and Vadim Yu. Kaloshin, Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces, Nonlinearity 12 (1999), no. 5, 1263–1275. MR 1710097, DOI https://doi.org/10.1088/0951-7715/12/5/303
- Brian R. Hunt, Judy A. Kennedy, Tien-Yien Li, and Helena E. Nusse, SLYRB measures: natural invariant measures for chaotic systems, Phys. D 170 (2002), no. 1, 50–71. MR 1945459, DOI https://doi.org/10.1016/S0167-2789%2802%2900445-1
- Brian R. Hunt, Tim Sauer, and James A. Yorke, Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 2, 217–238. MR 1161274, DOI https://doi.org/10.1090/S0273-0979-1992-00328-2
- Brian R. Hunt, Tim Sauer, and James A. Yorke, Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 2, 217–238. MR 1161274, DOI https://doi.org/10.1090/S0273-0979-1992-00328-2
- V. Yu. Kaloshin, Prevalence in spaces of finitely smooth mappings, Funktsional. Anal. i Prilozhen. 31 (1997), no. 2, 27–33, 95 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 31 (1997), no. 2, 95–99. MR 1475321, DOI https://doi.org/10.1007/BF02466014
- V. Yu. Kaloshin, Some prevalent properties of smooth dynamical systems, Tr. Mat. Inst. Steklova 213 (1997), no. Differ. Uravn. s Veshchestv. i Kompleks. Vrem., 123–151 (Russian); English transl., Proc. Steklov Inst. Math. 2(213) (1996), 115–140. MR 1632241
- Vadim Yu. Kaloshin, An extension of the Artin-Mazur theorem, Ann. of Math. (2) 150 (1999), no. 2, 729–741. MR 1726706, DOI https://doi.org/10.2307/121093
- Vadim Yu. Kaloshin, Generic diffeomorphisms with superexponential growth of number of periodic orbits, Comm. Math. Phys. 211 (2000), no. 1, 253–271. MR 1757015, DOI https://doi.org/10.1007/s002200050811
- Vadim Yu. Kaloshin and Brian R. Hunt, A stretched exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms. I, Electron. Res. Announc. Amer. Math. Soc. 7 (2001), 17–27. MR 1826992, DOI https://doi.org/10.1090/S1079-6762-01-00090-7
- Robert Kaufman, On Hausdorff dimension of projections, Mathematika 15 (1968), 153–155. MR 248779, DOI https://doi.org/10.1112/S0025579300002503 Lieb1976 E. Lieb and W. Thirring, Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, Studies in Mathematical Physics, Princeton University Press, 1976.
- Ricardo Mañé, On the dimension of the compact invariant sets of certain nonlinear maps, Dynamical systems and turbulence, Warwick 1980 (Coventry, 1979/1980), Lecture Notes in Math., vol. 898, Springer, Berlin-New York, 1981, pp. 230–242. MR 654892
- J. M. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimensions, Proc. London Math. Soc. (3) 4 (1954), 257–302. MR 63439, DOI https://doi.org/10.1112/plms/s3-4.1.257
- Pertti Mattila, Hausdorff dimension, orthogonal projections and intersections with planes, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), no. 2, 227–244. MR 0409774
- Ian Melbourne and Ian Stewart, Symmetric $\omega $-limit sets for smooth $\Gamma $-equivariant dynamical systems with $\Gamma ^0$ abelian, Nonlinearity 10 (1997), no. 6, 1551–1567. MR 1483554, DOI https://doi.org/10.1088/0951-7715/10/6/007
- John Milnor, On the concept of attractor, Comm. Math. Phys. 99 (1985), no. 2, 177–195. MR 790735
- T. Okon, Dimension estimate preserving embeddings for compacta in metric spaces, Arch. Math. (Basel) 78 (2002), no. 1, 36–42. MR 1887314, DOI https://doi.org/10.1007/s00013-002-8214-4 Ott2004 William Ott, Brian Hunt, and Vadim Kaloshin, The effect of projections on fractal sets and measures in Banach spaces, submitted to Ergodic Theory & Dynamical Systems, 2004.
- William Ott and James A. Yorke, Learning about reality from observation, SIAM J. Appl. Dyn. Syst. 2 (2003), no. 3, 297–322. MR 2031277, DOI https://doi.org/10.1137/S1111111102407421
- J. C. Oxtoby and S. M. Ulam, On the existence of a measure invariant under a transformation, Ann. of Math. (2) 40 (1939), 560–566. MR 97, DOI https://doi.org/10.2307/1968940
- Yuval Peres and Wilhelm Schlag, Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions, Duke Math. J. 102 (2000), no. 2, 193–251. MR 1749437, DOI https://doi.org/10.1215/S0012-7094-00-10222-0
- James C. Robinson, Infinite-dimensional dynamical systems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001. An introduction to dissipative parabolic PDEs and the theory of global attractors. MR 1881888
- Tim Sauer, James A. Yorke, and Martin Casdagli, Embedology, J. Statist. Phys. 65 (1991), no. 3-4, 579–616. MR 1137425, DOI https://doi.org/10.1007/BF01053745
- Timothy D. Sauer and James A. Yorke, Are the dimensions of a set and its image equal under typical smooth functions?, Ergodic Theory Dynam. Systems 17 (1997), no. 4, 941–956. MR 1468109, DOI https://doi.org/10.1017/S0143385797086252
- E. V. Shchepin and D. Repovš, On smoothness of compacta, J. Math. Sci. (New York) 100 (2000), no. 6, 2716–2726. Pontryagin Conference, 2, Nonsmooth Analysis and Optimization (Moscow, 1998). MR 1778991, DOI https://doi.org/10.1007/BF02672712
- Barry Simon, Operators with singular continuous spectrum. I. General operators, Ann. of Math. (2) 141 (1995), no. 1, 131–145. MR 1314033, DOI https://doi.org/10.2307/2118629
- Masato Tsujii, Fat solenoidal attractors, Nonlinearity 14 (2001), no. 5, 1011–1027. MR 1862809, DOI https://doi.org/10.1088/0951-7715/14/5/306
- Hassler Whitney, Differentiable manifolds, Ann. of Math. (2) 37 (1936), no. 3, 645–680. MR 1503303, DOI https://doi.org/10.2307/1968482
- Lai-Sang Young, What are SRB measures, and which dynamical systems have them?, J. Statist. Phys. 108 (2002), no. 5-6, 733–754. Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays. MR 1933431, DOI https://doi.org/10.1023/A%3A1019762724717
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): :, 28C10, 28C15, 28C20, :, 37C20, 37C45
Retrieve articles in all journals with MSC (2000): :, 28C10, 28C15, 28C20, :, 37C20, 37C45
Additional Information
William Ott
Affiliation:
Courant Institute of Mathematical Sciences, New York, New York 10012
Email:
ott@cims.nyu.edu
James A. Yorke
Affiliation:
Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742
Email:
yorke@ipst.umd.edu
Keywords:
Prevalence
Received by editor(s):
August 11, 2004
Published electronically:
March 30, 2005
Additional Notes:
This work is based on an invited talk given by the authors in January 2004 at the annual meeting of the AMS in Phoenix, AZ
Article copyright:
© Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.