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Humans have noted the rise and fall of plant and animal numbers since the dawn
of civilization. While many illustrious names are associated with early mathemati-
cal theories of population growth (such as Fibonnaci, Euler, Halley, and Malthus),
the first half of the twentieth century is generally regarded as the Golden Age of
mathematical ecology and population dynamics [TI]. These decades saw the formula-
tion of what are now viewed as the classical theories in these disciplines. Equations
such as the famous logistic differential equation, the Volterra predator-prey equa-
tions, and the Lotka-Volterra competition equations had a tremendous influence
on the development of both theoretical and applied ecology. They stimulated the
formulation of (and provided theoretical support to) many, if not most, of the fun-
damental tenets that underlie these disciplines — in one guise or another — to this
day. These tenets include exponential (unregulated) population growth, carrying
capacity (regulated growth), the principle of competitive exclusion, the concept
of ecological niche and limiting similarity, the classification of species as r or K
selectors, the oscillatory dynamics of predator-prey interactions, the paradox of
enrichment, and stable age distributions, to name only a few.

Ecological systems are complex. The variety of biological organisms on our
planet, and of the ecological interactions among them and their environments, is
staggering. In order to gain a deeper understanding of the complexities of the bio-
logical world, mathematicians and theoretical ecologists throughout the twentieth
century modified the classical models in innumerable ways and also developed new
models and modeling methodologies.

All mathematical models of necessity make simplifying assumptions, and as a
result there is a relentless trade-off between biological accuracy and mathematical
tractability. The classical models of Lotka and Volterra are described by systems
of autonomous ordinary differential equations in which the state variables are to-
tal population sizes (or densities). One way to organize the simplifying assump-
tions underlying such models is with respect to the uniformities and homogeneities
that are postulated (either explicitly or implicitly). For example, three important
assumptions underlying Lotka/Volterra models — indeed underlying many of the
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models found in mathematical ecology — concern homogeneities in space, time, and
the characteristics of individual organisms. In such models there is no attempt
to account for the spatial distribution or movement of biological organisms; it is
assumed that environmental and biological parameters are constant in time (so
that the equations are autonomous), and all individuals in the populations are
treated as identical organisms. Much of the development in theoretical ecology and
populations that followed the Golden Age focussed on relaxing these simplifying
assumptions in one way or another.

For example, there is now a large body of literature dealing with population
dynamic models that include spatial structure and population dispersal. The spatial
distribution of populations and their movements within habitats are of considerable
interest to ecologists, as well as to many others interested in such important issues
as the spread of diseases and undesirable organisms, threats to endangered species,
the management of renewable resources, the design of conservation preserves, and
so on. In this literature one finds many types of equations (e.g. partial differential,
integro-differential, and integral-difference equations) and challenging problems of
interest to mathematicans, including the formation of spatial patterns, the structure
of travelling waves, speed of propogation, etc. More recently, researchers have
also employed cellular automata type models to study the spatial distribution and
movement of biological populations.

There is also a substantial literature dealing with the non-autonomous equations
that arise when physical environments or vital biological parameters such as birth,
growth, and death rates vary temporally. Periodically forced differential and inte-
gral equations capture the effects of oscillations that are regular: daily fluctuations
in light and temperature, monthly oscillations of tides, annual changes of the sea-
sons, and so on. At the opposite extreme, stochastic equations model stochastic
fluctuations that occur all too frequently in ecological systems. These kinds of
models provide interesting and challenging mathematical problems, and they raise
questions concerning the extent to which fundamental principles in population dy-
namics and ecology, formulated on the basis of autonomous deterministic models,
remain valid for non-autonomous and/or stochastic models.

There is also now a well-established body of literature concerned with dynamic
models of populations in which all individuals are no longer treated as identical to
one another. Individuals that make up biological populations generally differ with
regard to their physiological and behavioral characteristics. They therefore differ in
the ways that they interact with their physical environment and with other individ-
uals (of their own species as well as with those of other species). As a result, vital
processes such as birth, death, growth, metabolism, resource consumption, move-
ment, etc., all vary among individuals within a population. Birth rates of younger
individuals are generally quite different from those of older individuals, mortality
rates of larger individuals are usually different from those of smaller individuals,
and so on. These differences can be considerable, with variances sometimes greater
within a population than among different populations.

Researchers have employed several different methodologies to derive dynamic
models that take into account crucial differences among individuals. The history
of these kinds of models extends back to the first half of the twentieth century
(for example, to the influential work of A. G. McKendrick and P. H. Leslie). The
recognition that the fundamental unit in population biology is the (reproducing)
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individual and the desire to relate biological knowledge about individual organ-
isms to the dynamics of the entire population stimulated a resurgence of interest
during the last decades of the century in connecting individual level dynamics to
population level dynamics. Leslie’s early contribution was the introduction of ma-
trix models (or difference equations) to the description of the dynamics of specified
categories within a population. His primary interest was with categories based on
chronological age, but his methodology extends easily to populations structured
by other physiological characteristics (such as body size, weight, life cycle stage,
etc.). From a mathematical point of view, these discrete time models constitute an
outstanding example of the application of matrix theory. The continuous analogs
of matrix models involve first order hyperbolic partial differential equations. These
model equations are akin to those found in continuum mechanics, except that they
typically involve non-local integrals in both the (nonlinear) differential equations
and (nonlinear) boundary conditions. The rigorous mathematical treatment of
these equations is a challenge (even with regard to the basic questions of solution
existence and uniqueness, to say nothing of the analysis of asymptotic dynamics).
Although the modeling methodology has been clarified and much has been accom-
plished (for example by using nonlinear semi-group methods), the general theory
of structured population dynamics is still incomplete in many ways and therefore
provides many opportunities for mathematicians to contribute to the further de-
velopment of theoretical population dynamics and ecology. Other approaches to
the dynamics of populations with differing individuals include agent (or individ-
ual) based models, in which each individual organism is modeled separately, rules
of temporal changes in individual characteristics are adopted, and the population
level dynamics are followed by means of computer simulations.

Mathematics and science are disciplinary activities. One consequence of the
development of mathematical ecology and population dynamics during the last
century was a divergence into different subdisciplines. Within mathematics, math-
ematical ecology became a somewhat insular cottage industry whose efforts often
lacked concrete biological underpinnings. As R. M. May pointed out in his in-
fluential monograph, it is easy to cobble together a virtually endless number of
theoretical and speculative ecological models from some basic modeling building
blocks [2]. After doing this, one can, as a mathematician, have fun in analyzing
the resulting equations and thinking (hoping?) that the results have application
to problems of interest to biologists. In some light-hearted way this is perhaps not
an unreasonable expectation for even a carelessly constructed model, since a math-
ematician’s tongue-in-check definition of a good biologist might be one who can
find a biological application of his/her favorite equation. On a more serious side,
however, a healthy development of theoretical ecology is obviously not enhanced by
the lack of communication between mathematicians and biologists.

Unfortunately, too much of the literature in mathematical ecology consists of
mathematical results that mean too little (if anything) to ecologists. Often this
literature does not adequately discuss the biological motivation or relevance of the
equations studied, nor of the questions addressed, and the results of a mathematical
analysis are not interpreted in a meaningful way (if at all). All too often there
is no careful and thorough derivation of the model equations from fundamental
biological principles and mechanisms, with the result that the models can miss
their intended purpose. For example, a biologically reasonable model might, but
does not necessarily, result from a familiar model by simply inserting a time delay
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in some term of an equation (and casually remarking something about gestation
or maturation periods) or by adding white noise to an equation (does this model
environmental or demographic stochasticity? sampling error?). Although there are
many aspects to the gaps dividing mathematicians and ecologists [3], attention to
these issues would certainly help to improve the application of mathematics to the
ecological sciences. It is with regard to these issues that the book under review
stands out in a favorable way.

The book is the result of courses taught by the author over a number of years
at Arizona State University. The courses, and therefore the mathematical material
in the book, range from an undergraduate (junior) level to an advanced graduate
level. The book is organized, however, around biological rather than mathematical
themes. Twenty-three chapters are divided into three parts. A fourth part of
the text, entitled “Toolbox”, contains a number of appendices devoted to selected
mathematical topics, techniques and theorems.

In Part 1 (“Basic Population Growth Models”) the author provides an extended
treatment of single species models. He formulates a general model from basic
biological principles (birth, death, immigration, emigration processes) and from it
provides careful derivations of the classical models (associated with names such
as von Bertalanfly, Verhulst, Berverton-Holt, Gompertz, Allee and others) that
form the bases of more complex models and applications. Part 1 concludes with a
theme close to the author’s research interest, namely the dynamics of structured
populations, developed by means of a case study of an aquatic population subject to
a toxic pollutant followed by the formulation and study of a general juvenile/adult
structured model.

As the author points out, there is an underlying organization of material through-
out the text based on increasing mathematical difficulty that is not apparent in the
table of contents. In Part 1 the beginning chapters require only single variable cal-
culus and some elementary knowledge of ordinary differential equations (although
basic methods from an introductory course are developed in the book). Subsequent
chapters use topics from advanced calculus and more advanced courses in ordinary
differential equations. Specifically, the final chapters of Part 1 use phase plane anal-
ysis, linearization, Poincaré-Bendixson theory, the Hopf bifurcation theorem, and
persistence theory. The required definitions and theorems appear in the “Toolbox”
part.

In Part 2 (“Stage Transitions and Demographics”) the author takes up in earnest
the topic of structured population dynamics. He carefully develops a methodology
for building the submodels concerned with stage transitions of individual organ-
isms that are necessary to formulate models for the (longer term) dynamics at the
population level. Considerable attention is paid to models that structure popu-
lations according to chronological age, where demographic quantities such as life
expectancy and inherent net reproductive rates are related to their dynamic conse-
quences. Models take the form of partial differential equations, integral equations,
or time delayed ordinary differential equations. Most of the material in Part 2
concerns linear models, although a chapter is devoted to nonlinear models. The
mathematical prerequisites begin at the single variable calculus level and proceed
to the advanced calculus level (e.g., Stieljes integrals).

The author includes a considerable amount of material on epidemic (host-
parasite) models. Part 3 (“Host-Parasite Population Growth: Epidemiology of
Infectious Diseases”) begins with a historical discussion of the impact of infectious
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diseases on humans and a formulation of the classic SIR model of Kermack and
McKendrick (in which susceptible, infectious, and recovered stages of the disease
are dynamically tracked). The remainder of Part 3 consists of the development and
study of more complex models that include other important stages of diseases and
the demography of the populations (such as age structure). The author carefully
defines crucial quantities, such as the net replacement ratio Ry and the average age
of infection, and relates them throughout Part 3 to the dynamics of the epidemic.
Among the problems addressed are thresholds for Ry (above which an epidemic
occurs), vaccination strategies (as optimization problems), and characteristics of
epidemics (such as the final “size” of an epidemic). The mathematical background
required for Part 3 is the most demanding in the book. The reader will need to
be familiar with intermediate level ordinary differential equations, some measure
theory, and Lebesgue-Stieltjes integration. The “Toolbox” appendices contain the
required theorems from these topics, as well as other topics that arise (e.g., convex
theory and Perron-Frobenius theory).

Each chapter contains exercises and bibliographic remarks that provide refer-
ences for further reading. Part 4 contains Maple worksheets that can be used to
study some of the models presented in the book. As a result, the book could
profitably be used as a text in graduate or advanced undergraduate courses and
seminars.

Mathematicians will be pleased to find that definitions and theorems are carefully
and rigorously stated (and in some cases proved) in the book. Thus, a unique feature
of the book is that neither the rigorous derivation and interpretation of biological
models nor the rigorous presentation and use of mathematics are slighted. The
author does not present as broad a sweep of population dynamics and theoretical
ecology as other textbooks attempt to do. Instead, he offers the reader a more
in-depth and accurate presentation of the selected topics than is usually found
in other books. Readers with the required mathematical background will be well
rewarded by discovering how mathematics can be applied to important problems
in population biology. Moreover, they will be in an excellent position to begin
or supplement their own research into this field (and many other related fields of
bioscience). By focussing on selected chapters, students with less mathematical
background will be similarly rewarded (and, in addition, will likely be motivated
to learn more mathematics!). The book is a welcome contribution to the growing
list of textbooks on the mathematics of population dynamics — a contribution that
distinguishes itself by its carefully thought out and rigorous presentation of both
the biological and mathematical aspects of the subject.
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