Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF This review is available free of charge.

Book Information:

Authors: Michael Aschbacher and Stephen D. Smith

Title: The classification of quasithin groups I, II

Additional book information: Vol. 111, Mathematical Surveys and Monographs, vols. 111--112, American Mathematical Society, Providence, RI, 2004, 1221 pp., ISBN 0-8218-3410-X, US$228.00$; ISBN 0-8218-3411-8

*On finite groups of component type*, Illinois J. Math.

**19**(1975), 87–115. MR

**376843**

*A characterization of Chevalley groups over fields of odd order*, Ann. of Math. (2)

**106**(1977), no. 2, 353–398. MR

**498828**, DOI 10.2307/1971100

*Thin finite simple groups*, J. Algebra

**54**(1978), no. 1, 50–152. MR

**511458**, DOI 10.1016/0021-8693(78)90022-4

*Finite groups of rank $3$. I*, Invent. Math.

**63**(1981), no. 3, 357–402. MR

**620676**, DOI 10.1007/BF01389061

*The uniqueness case for finite groups. I*, Ann. of Math. (2)

**117**(1983), no. 2, 383–454. MR

**690850**, DOI 10.2307/2007081

*Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläßt*, J. Algebra

**17**(1971), 527–554 (German). MR

**288172**, DOI 10.1016/0021-8693(71)90008-1

*Groups and graphs: new results and methods*, DMV Seminar, vol. 6, Birkhäuser Verlag, Basel, 1985. With a preface by the authors and Bernd Fischer. MR

**862622**

*Solvability of groups of odd order*, Pacific J. Math.

**13**(1963), 775–1029. MR

**166261**

*Finite groups with standard components of Lie type over fields of characteristic two*, J. Algebra

**80**(1983), no. 2, 383–516. MR

**691810**, DOI 10.1016/0021-8693(83)90007-8

*On solvable signalizer functors in finite groups*, Proc. London Math. Soc. (3)

**33**(1976), no. 1, 1–27. MR

**417284**, DOI 10.1112/plms/s3-33.1.1

*Automorphisms of trivalent graphs*, Ann. of Math. (2)

**111**(1980), no. 2, 377–406. MR

**569075**, DOI 10.2307/1971203

*Finite groups whose $2$-subgroups are generated by at most $4$ elements*, Memoirs of the American Mathematical Society, No. 147, American Mathematical Society, Providence, R.I., 1974. MR

**0367048**

*The local structure of finite groups of characteristic $2$ type*, Mem. Amer. Math. Soc.

**42**(1983), no. 276, vii+731. MR

**690900**, DOI 10.1090/memo/0276

*The classification of the finite simple groups*, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1994. MR

**1303592**, DOI 10.1090/surv/040.1

*Balance and generation in finite groups*, J. Algebra

**33**(1975), 224–287. MR

**357583**, DOI 10.1016/0021-8693(75)90123-4

*An application of the amalgam method: the $2$-local structure of $N$-groups of characteristic $2$ type*, J. Algebra

**190**(1997), no. 1, 11–67. MR

**1442145**, DOI 10.1006/jabr.1996.6864

*Nonsolvable finite groups all of whose local subgroups are solvable*, Bull. Amer. Math. Soc.

**74**(1968), 383–437. MR

**230809**, DOI 10.1090/S0002-9904-1968-11953-6

*Finite simple groups in which the generalized Fitting group of the centralizer of some involution is extraspecial*, Ann. of Math. (2)

**107**(1978), no. 2, 297–369. MR

**486255**, DOI 10.2307/1971146

Review Information:

Reviewer: Ronald Solomon

Affiliation: The Ohio State University

Email: solomon@math.ohio-state.edu

Journal: Bull. Amer. Math. Soc.

**43**(2006), 115-121

Published electronically: July 5, 2005

Review copyright: © Copyright 2005 American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.