Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Michael Aschbacher and Stephen D. Smith
Title: The classification of quasithin groups I, II
Additional book information: Vol. 111, Mathematical Surveys and Monographs, vols. 111--112, American Mathematical Society, Providence, RI, 2004, 1221 pp., ISBN 0-8218-3410-X, US$228.00$; ISBN 0-8218-3411-8

References [Enhancements On Off] (What's this?)

  • Michael Aschbacher, On finite groups of component type, Illinois J. Math. 19 (1975), 87–115. MR 376843
  • Michael Aschbacher, A characterization of Chevalley groups over fields of odd order, Ann. of Math. (2) 106 (1977), no. 2, 353–398. MR 498828, DOI 10.2307/1971100
  • Michael Aschbacher, Thin finite simple groups, J. Algebra 54 (1978), no. 1, 50–152. MR 511458, DOI 10.1016/0021-8693(78)90022-4
  • Michael Aschbacher, Finite groups of rank $3$. I, Invent. Math. 63 (1981), no. 3, 357–402. MR 620676, DOI 10.1007/BF01389061
  • Michael Aschbacher, The uniqueness case for finite groups. I, Ann. of Math. (2) 117 (1983), no. 2, 383–454. MR 690850, DOI 10.2307/2007081
  • Helmut Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläßt, J. Algebra 17 (1971), 527–554 (German). MR 288172, DOI 10.1016/0021-8693(71)90008-1
  • A. Delgado, D. Goldschmidt, and B. Stellmacher, Groups and graphs: new results and methods, DMV Seminar, vol. 6, Birkhäuser Verlag, Basel, 1985. With a preface by the authors and Bernd Fischer. MR 862622
  • Walter Feit and John G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775–1029. MR 166261
  • Robert H. Gilman and Robert L. Griess Jr., Finite groups with standard components of Lie type over fields of characteristic two, J. Algebra 80 (1983), no. 2, 383–516. MR 691810, DOI 10.1016/0021-8693(83)90007-8
  • George Glauberman, On solvable signalizer functors in finite groups, Proc. London Math. Soc. (3) 33 (1976), no. 1, 1–27. MR 417284, DOI 10.1112/plms/s3-33.1.1
  • David M. Goldschmidt, Automorphisms of trivalent graphs, Ann. of Math. (2) 111 (1980), no. 2, 377–406. MR 569075, DOI 10.2307/1971203
  • Daniel Gorenstein and Koichiro Harada, Finite groups whose $2$-subgroups are generated by at most $4$ elements, Memoirs of the American Mathematical Society, No. 147, American Mathematical Society, Providence, R.I., 1974. MR 0367048
  • Daniel Gorenstein and Richard Lyons, The local structure of finite groups of characteristic $2$ type, Mem. Amer. Math. Soc. 42 (1983), no. 276, vii+731. MR 690900, DOI 10.1090/memo/0276
  • Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1994. MR 1303592, DOI 10.1090/surv/040.1
  • Daniel Gorenstein and John H. Walter, Balance and generation in finite groups, J. Algebra 33 (1975), 224–287. MR 357583, DOI 10.1016/0021-8693(75)90123-4
  • Bernd Stellmacher, An application of the amalgam method: the $2$-local structure of $N$-groups of characteristic $2$ type, J. Algebra 190 (1997), no. 1, 11–67. MR 1442145, DOI 10.1006/jabr.1996.6864
  • John G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383–437. MR 230809, DOI 10.1090/S0002-9904-1968-11953-6
  • Franz Timmesfeld, Finite simple groups in which the generalized Fitting group of the centralizer of some involution is extraspecial, Ann. of Math. (2) 107 (1978), no. 2, 297–369. MR 486255, DOI 10.2307/1971146

  • Review Information:

    Reviewer: Ronald Solomon
    Affiliation: The Ohio State University
    Email: solomon@math.ohio-state.edu
    Journal: Bull. Amer. Math. Soc. 43 (2006), 115-121
    Published electronically: July 5, 2005
    Review copyright: © Copyright 2005 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.