Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Andrei Yu. Khrennikov and Marcus Nilsson
Title: p -Adic deterministic and random dynamics
Additional book information: Kluwer Academic, Dordrecht-Boston-London, 2004, 270 pp., ISBN 1-4020-2659-5, US$99.00$

References [Enhancements On Off] (What's this?)

  • David K. Arrowsmith and Franco Vivaldi, Geometry of $p$-adic Siegel discs, Phys. D 71 (1994), no. 1-2, 222–236. MR 1264116, DOI 10.1016/0167-2789(94)90191-0
  • bakerrumely M. Baker and R. Rumely, Analysis and dynamics on the Berkovich projective line, arXiv:math.NT/0407433, 2004.
  • Robert L. Benedetto, Components and periodic points in non-Archimedean dynamics, Proc. London Math. Soc. (3) 84 (2002), no. 1, 231–256. MR 1863402, DOI 10.1112/plms/84.1.231
  • Amnon Besser and Christopher Deninger, $p$-adic Mahler measures, J. Reine Angew. Math. 517 (1999), 19–50. MR 1728549, DOI 10.1515/crll.1999.093
  • D. Bosio and F. Vivaldi, Round-off errors and $p$-adic numbers, Nonlinearity 13 (2000), no. 1, 309–322. MR 1734635, DOI 10.1088/0951-7715/13/1/315
  • John Bryk and Cesar E. Silva, Measurable dynamics of simple $p$-adic polynomials, Amer. Math. Monthly 112 (2005), no. 3, 212–232. MR 2125384, DOI 10.2307/30037439
  • Lee Brekke, Peter G. O. Freund, Mark Olson, and Edward Witten, Non-Archimedean string dynamics, Nuclear Phys. B 302 (1988), no. 3, 365–402. MR 947888, DOI 10.1016/0550-3213(88)90207-6
  • Gregory S. Call and Joseph H. Silverman, Canonical heights on varieties with morphisms, Compositio Math. 89 (1993), no. 2, 163–205. MR 1255693
  • Zaqueu Coelho and William Parry, Ergodicity of $p$-adic multiplications and the distribution of Fibonacci numbers, Topology, ergodic theory, real algebraic geometry, Amer. Math. Soc. Transl. Ser. 2, vol. 202, Amer. Math. Soc., Providence, RI, 2001, pp. 51–70. MR 1819181, DOI 10.1090/trans2/202/06
  • Manfred Einsiedler and Douglas Lind, Algebraic $\Bbb Z^d$-actions of entropy rank one, Trans. Amer. Math. Soc. 356 (2004), no. 5, 1799–1831. MR 2031042, DOI 10.1090/S0002-9947-04-03554-8
  • Peter G. O. Freund and Mark Olson, Non-Archimedean strings, Phys. Lett. B 199 (1987), no. 2, 186–190. MR 919703, DOI 10.1016/0370-2693(87)91356-6
  • Peter G. O. Freund and Edward Witten, Adelic string amplitudes, Phys. Lett. B 199 (1987), no. 2, 191–194. MR 919704, DOI 10.1016/0370-2693(87)91357-8
  • M. Herman and J.-C. Yoccoz, Generalizations of some theorems of small divisors to non-Archimedean fields, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 408–447. MR 730280, DOI 10.1007/BFb0061427
  • Liang-Chung Hsia, A weak Néron model with applications to $p$-adic dynamical systems, Compositio Math. 100 (1996), no. 3, 277–304. MR 1387667
  • Andrei Khrennikov, Non-Archimedean analysis: quantum paradoxes, dynamical systems and biological models, Mathematics and its Applications, vol. 427, Kluwer Academic Publishers, Dordrecht, 1997. MR 1746953, DOI 10.1007/978-94-009-1483-4
  • Andrei Khrennikov, Shinichi Yamada, and Arnoud van Rooij, The measure-theoretical approach to $p$-adic probability theory, Ann. Math. Blaise Pascal 6 (1999), no. 1, 21–32. MR 1693138
  • Hua-Chieh Li, $p$-adic dynamical systems and formal groups, Compositio Math. 104 (1996), no. 1, 41–54. MR 1420709
  • D. A. Lind, The structure of skew products with ergodic group automorphisms, Israel J. Math. 28 (1977), no. 3, 205–248. MR 460593, DOI 10.1007/BF02759810
  • D. A. Lind, Ergodic group automorphisms are exponentially recurrent, Israel J. Math. 41 (1982), no. 4, 313–320. MR 657863, DOI 10.1007/BF02760537
  • Douglas Lind and Klaus Schmidt, Bernoullicity of solenoidal automorphisms and global fields, Israel J. Math. 87 (1994), no. 1-3, 33–35. MR 1286813, DOI 10.1007/BF02772981
  • Douglas Lind, Klaus Schmidt, and Tom Ward, Mahler measure and entropy for commuting automorphisms of compact groups, Invent. Math. 101 (1990), no. 3, 593–629. MR 1062797, DOI 10.1007/BF01231517
  • D. A. Lind and T. Ward, Automorphisms of solenoids and $p$-adic entropy, Ergodic Theory Dynam. Systems 8 (1988), no. 3, 411–419. MR 961739, DOI 10.1017/S0143385700004545
  • D. W. Masser, Mixing and linear equations over groups in positive characteristic, Israel J. Math. 142 (2004), 189–204. MR 2085715, DOI 10.1007/BF02771532
  • Patrick Morton and Joseph H. Silverman, Periodic points, multiplicities, and dynamical units, J. Reine Angew. Math. 461 (1995), 81–122. MR 1324210, DOI 10.1515/crll.1995.461.81
  • Juan Rivera-Letelier, Dynamique des fonctions rationnelles sur des corps locaux, Astérisque 287 (2003), xv, 147–230 (French, with English and French summaries). Geometric methods in dynamics. II. MR 2040006
  • Klaus Schmidt, Dynamical systems of algebraic origin, Progress in Mathematics, vol. 128, Birkhäuser Verlag, Basel, 1995. MR 1345152
  • silverman J. Silverman, www.math.brown.edu/$\tilde {\ }$jhs/MA0272/ArithDynRefsOnly.pdf. vivaldi F. Vivaldi, www.maths.qmw.ac.uk/$\tilde {\ }$fv/database/algdyn.bib.
  • T. B. Ward, Almost all $S$-integer dynamical systems have many periodic points, Ergodic Theory Dynam. Systems 18 (1998), no. 2, 471–486. MR 1619569, DOI 10.1017/S0143385798113378
  • Thomas B. Ward, Additive cellular automata and volume growth, Entropy 2 (2000), no. 3, 142–167. MR 1882488, DOI 10.3390/e2030142
  • S. A. Juzvinskiĭ, Calculation of the entropy of a group-endomorphism, Sibirsk. Mat. . 8 (1967), 230–239 (Russian). MR 0214726

  • Review Information:

    Reviewer: Thomas Ward
    Affiliation: University of East Anglia
    Email: t.ward@uea.ac.uk
    Journal: Bull. Amer. Math. Soc. 43 (2006), 133-137
    Published electronically: October 7, 2005
    Review copyright: © Copyright 2005 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.