Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Athanase Papadopoulos
Title: Metric spaces, convexity, and nonpositive curvature
Additional book information: European Math. Soc., Zürich, 2005, xii + 287 pp., ISBN 3-03719-010-8, EUR 48.00

References [Enhancements On Off] (What's this?)

  • Luigi Ambrosio and Paolo Tilli, Topics on analysis in metric spaces, Oxford Lecture Series in Mathematics and its Applications, vol. 25, Oxford University Press, Oxford, 2004. MR 2039660
  • Pascal Auscher, Thierry Coulhon, and Alexander Grigor’yan (eds.), Heat kernels and analysis on manifolds, graphs, and metric spaces, Contemporary Mathematics, vol. 338, American Mathematical Society, Providence, RI, 2003. Lecture notes from a Quarter Program on Heat Kernels, Random Walks, and Analysis on Manifolds and Graphs held in Paris, April 16–July 13, 2002. MR 2041910, DOI 10.1090/conm/338
  • André Bellaïche and Jean-Jacques Risler (eds.), Sub-Riemannian geometry, Progress in Mathematics, vol. 144, Birkhäuser Verlag, Basel, 1996. MR 1421821, DOI 10.1007/978-3-0348-9210-0
  • J. W. S. Cassels, Local fields, London Mathematical Society Student Texts, vol. 3, Cambridge University Press, Cambridge, 1986. MR 861410, DOI 10.1017/CBO9781139171885
  • Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. MR 0499948
  • Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645. MR 447954, DOI 10.1090/S0002-9904-1977-14325-5
  • Fernando Q. Gouvêa, $p$-adic numbers, 2nd ed., Universitext, Springer-Verlag, Berlin, 1997. An introduction. MR 1488696, DOI 10.1007/978-3-642-59058-0
  • Juha Heinonen, Calculus on Carnot groups, Fall School in Analysis (Jyväskylä, 1994) Report, vol. 68, Univ. Jyväskylä, Jyväskylä, 1995, pp. 1–31. MR 1351042, DOI 10.1530/jrf.0.0680001
  • Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917, DOI 10.1007/978-1-4613-0131-8
  • Juha Heinonen, Geometric embeddings of metric spaces, Report. University of Jyväskylä Department of Mathematics and Statistics, vol. 90, University of Jyväskylä, Jyväskylä, 2003. MR 2014506
  • Jun Kigami, Analysis on fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge, 2001. MR 1840042, DOI 10.1017/CBO9780511470943
  • Steven G. Krantz, Complex analysis: the geometric viewpoint, 2nd ed., Carus Mathematical Monographs, vol. 23, Mathematical Association of America, Washington, DC, 2004. MR 2047863, DOI 10.5948/UPO9780883859681
  • Richard Montgomery, A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, vol. 91, American Mathematical Society, Providence, RI, 2002. MR 1867362, DOI 10.1090/surv/091
  • Stephen Semmes, An introduction to analysis on metric spaces, Notices Amer. Math. Soc. 50 (2003), no. 4, 438–443. MR 1960309
  • Stephen Semmes, An introduction to Heisenberg groups in analysis and geometry, Notices Amer. Math. Soc. 50 (2003), no. 6, 640–646. MR 1988576
  • Stephen Semmes, Happy fractals and some aspects of analysis on metric spaces, Publ. Mat. 47 (2003), no. 2, 261–309. MR 2006486, DOI 10.5565/PUBLMAT_{4}7203_{0}1
  • Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
  • Robert S. Strichartz, Analysis on fractals, Notices Amer. Math. Soc. 46 (1999), no. 10, 1199–1208. MR 1715511
  • M. H. Taibleson, Fourier analysis on local fields, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1975. MR 0487295
  • A. C. Thompson, Minkowski geometry, Encyclopedia of Mathematics and its Applications, vol. 63, Cambridge University Press, Cambridge, 1996. MR 1406315, DOI 10.1017/CBO9781107325845
  • Edoardo Vesentini, Invariant metrics on convex cones, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 4, 671–696. MR 433228
  • N. Th. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and geometry on groups, Cambridge Tracts in Mathematics, vol. 100, Cambridge University Press, Cambridge, 1992. MR 1218884

  • Review Information:

    Reviewer: Stephen Semmes
    Affiliation: Rice University
    Journal: Bull. Amer. Math. Soc. 43 (2006), 435-438
    Published electronically: April 19, 2006
    Review copyright: © Copyright 2006 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.