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QUADRATIC DIOPHANTINE EQUATIONS, THE CLASS
NUMBER, AND THE MASS FORMULA

GORO SHIMURA

1. The basic setting and two ternary cases

We take a finite-dimensional vector space V over a field F and take also an
F -bilinear symmetric form ϕ : V × V → F . We then put ϕ[x] = ϕ(x, x) for
x ∈ V, thus using the same letter ϕ for the quadratic form and the corresponding
symmetric form. By a quadratic Diophantine equation we mean an equation of the
type

(1) ϕ[x] = q

with a given q ∈ F×. In particular, in the classical case with F = Q and V = Qn,
we usually assume that ϕ is Z-valued on Zn and q ∈ Z. The purpose of the present
article is to present some new ideas on various arithmetical questions on such an
equation. We start with some of our basic symbols and terminology. For a set X
we denote by #X or #{X} the number (≤ ∞) of elements of X. For an associative
ring R with identity element, we denote by R× the group of invertible elements of
R and by Mn(R) the ring of all square matrices of size n with entries in R. We
then put GLn(R) = Mn(R)× and denote by 1n the identity element of Mn(R). For
two square matrices A and B of size m and n we denote by diag[A, B] the square
matrix of size m + n with A and B in diagonal blocks and zeros in the remaining
blocks.

Now, given (V, ϕ) as above, we always assume that ϕ is nondegenerate. We also
put n = dim(V ) and define, as usual, the orthogonal group Oϕ(V ) and the special
orthogonal group SOϕ(V ) by

Oϕ(V ) =
{
α ∈ GL(V )

∣∣ϕ[xα] = ϕ[x] for every x ∈ V
}
,

SOϕ(V ) = Oϕ(V ) ∩ SL(V ), written also SO(ϕ) and SO(V, ϕ).

We let GL(V ) act on V on the right, so that xα is the image of x under α.
As the base field F we take, for the moment, an algebraic number field or its

completion at a nonarchimedean prime. We denote by g the ring of algebraic
integers in the former case and the ring of local integers in the latter case. Those
who are not much interested in the general case may assume that F is Q or the
p-adic number field Qp for any prime number p, and g is Z or the ring Zp of
p-adic integers. By a g-lattice (simply a lattice) in V we mean a finitely generated
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g-submodule of V that spans V over F. We call a lattice L in V integral (with
respect to ϕ) if ϕ[x] ∈ g for every x ∈ L. Given a lattice L in V, we put

(2) Γ (L) =
{
α ∈ SOϕ(V )

∣∣Lα = L
}
.

In the simplest case we can take V = Qn, L = Zn, and ϕ[x] = xΦ · tx with a
matrix Φ = (cij) with cij ∈ Q and a row vector x = (xi)n

i=1. Clearly L is integral
if and only if 2cij ∈ Z and cii ∈ Z for every i and j; Γ (L) = SOϕ(V ) ∩ SLn(Z).

Let us now consider some questions about equation (1). Taking a lattice L in V,
we can ask, for example, the number of elements in the set

(3a) L[q] =
{
x ∈ L

∣∣ ϕ[x] = q
}
,

which is an old problem investigated by many number theorists, especially when
ϕ[x] =

∑n
i=1 x2

i and L = Zn. This question is preceded by a famous statement of
Fermat that every natural number is the sum of at most three triangular numbers,
and also of four squares, of five pentagonal numbers, etc. Though this problem is
of a nature quite different from the type of problems we are going to discuss, it
must be remembered that it was also a question about quadratic forms and that
many mathematicians in the 18th and early 19th centuries were conscious of this
problem and expended considerable effort toward its solution.

In addition to L[q], there is another set which has a long history as an object of
study. Namely, assuming L = Zn, we put

(3b) L0[q] =
{
x = {xi}n

i=1 ∈ L[q]
∣∣ n∑

i=1

xiZ = Z
}

and call an element of L0[q] a primitive solution of equation (1). In terms of
matrices, the equation has the form xΦ · tx = q, and x = {xi}n

i=1 is primitive if the
xi have no nontrivial common divisor. Notice that both L[q] and L0[q] are stable
under Γ (L).

This condition of primitivity is fundamental in our theory, as will be explained
later. For the moment, let us just say that the nature of the question about L0[q] is
quite different from that about L[q]: roughly speaking, the former is more concep-
tual, and the latter more computational. We shall eventually explain this difference
and present a new interpretation of L0[q], which leads to certain class number for-
mulas for orthogonal groups and new mass formulas for such groups. We will also
consider an equation of the type ξΦ · tξ = Ψ with another symmetric matrix Ψ of
size m (instead of a scalar q) and an (m × n)-matrix ξ and will develop a theory
parallel to that for ϕ[x] = q.

We now recall an ancient problem: to find a systematic method of obtaining
x ∈ L[q] when F = Q, n = 2, and L = Z2. Such was discussed by many math-
ematicians, Fermat and Euler, in particular. But all those works were restricted
to some special binary forms. The case of an arbitrary binary form was settled by
Lagrange [12] and later reformulated by Gauss [7]. In this article, however, we are
not interested in their methods of how to find x. Indeed, what concerns us is the
“conceptual meaning” of each solution of (1) when n > 2. Still, there are some
aspects of Lagrange’s work relevant to our topic. We first note that he introduced
the notion of a class of binary forms. To be precise, take F = Q and g = Z and
consider a quadratic form ξu2 + ζuv + ηv2 of two variables u, v with coefficients
ξ, η, ζ ∈ Z. We then put q = 4ξη − ζ2 and call −q the discriminant of the binary
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form; we naturally assume that q �= 0. If we represent the form by the matrix

h =
[

ξ ζ/2
ζ/2 η

]
,

then det(2h) = q. We say that another form represented by a similar matrix h′

belongs to the same class as h if

(4) h′ = det(α)−1 · αh · tα with α ∈ GL2(Z).

Here we deviate from the traditional definition h′ = αh · tα with α ∈ SL2(Z),
because (4) with GL2(g) in place of GL2(Z) is the best definition in the case of an
arbitrary number field.

Now Lagrange showed that the number of classes of the forms with a given
discriminant is finite. For this and other results of Lagrange and his predecessors,
the reader is referred to Weil’s book [31]. For an obvious technical reason, it is
natural to assume, as Lagrange and later researchers did, that the binary form is
primitive, which means that ξ, η, ζ have no nontrivial common divisor.

In order to interprete the notion of class in a different way, we consider a ternary
form ϕ defined on Q3 by

(5a) ϕ[(x, y, z)] = 4xy − z2.

If we fix q, then a primitive binary form of discriminat −q corresponds to a
primitive solution h = (ξ, η, ζ) ∈ Z3 of the equation ϕ[h] = q with ϕ of (5a), that
is, an element of L0[q] with L = Z3. This much is trivial, but here is a nontrivial
fact: Γ (Z3) defined by (2) in the present case consists of all the maps h �→ h′ of (4).
(It seems that the previous researchers did not connect SO(ϕ) for ϕ of (5a) with
binary forms, and the last fact on Γ (Z3) is not a well known old result. Indeed,
the corresponding fact in the case of an arbitrary number field F depends on the
nature of the ideal class group of F ; see [22, Lemma 12.10].) Therefore the classes
of binary forms of discriminant −q correspond bijectively to L0[q]/Γ (L) defined
with respect to ϕ of (5a). Denoting by c(q) the number of classes of primitive
binary forms of discriminant −q, we thus obtain

(5b) #
{
L0[q]/Γ (L)

}
= c(q).

Before discussing another ternary form, let us state here a basic result of Dede-
kind. Assuming that −q is not a square in Q, define a quadratic extension K of Q
by K = Q(

√−q ). Then we can put −q = f2d with 0 < f ∈ Z and the discriminant
d of K. Denote by r the ring of algebraic integers in K and define a subring o of r

by o = Z+fr. Then Dedekind [4, §187] showed that there is a bijection from the set
of all ideal classes of proper o-ideals onto the set of all classes of primitive binary
forms of discriminat −q. If −q = d, then f = 1, o = r, and a proper o-ideal is a
fractional ideal in K. As to later expositions of this result of Dedekind, the reader is
referred to [10, §53] and [3, Chapter II, §7.5], for example. By virtue of this result,
c(q) is the class number of such an o and, in particular, the class number of K if
−q = d. Though the theory of proper o-ideals is not so complicated, we will not go
into details here, as such is not essential for the understanding of our main ideas.

Next we turn to a more difficult problem concerning

(6a) ϕ[(x, y, z)] = x2 + y2 + z2.

We naturally look for primitive solutions h of the equation ϕ[h] = q for a given
q ∈ Z, > 0. In this case, the permutations of (x, y, z) and the diagonal elements
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of GL3(Z) generate a group of order 48 which has Γ (Z3) as a subgroup of index
2. Now Gauss showed in [7] that such a primitive solution exists if and only if
q = b2m with an odd positive integer b and a squarefree positive integer m such
that m �≡ 7 (mod 8). From this he derived by a short elementary argument that
every natural number is the sum of at most three triangular numbers. (It may be
added that Lagrange solved the case of four squares some 30 years earlier.) These
were already wonderful achievements, but he proved a far deeper result on L0[q]
for such a q, which can be reformulated as follows:

(6b) #
{
L0[q]/Γ (L)

}
= c(q) ·

{
1 if m ≡ 3 (mod 4) or q ≤ 2,

2−1 otherwise.

From this we can easily derive a formula valid for q = b2m > 3 :

(6c) #L0[q] = c(q) ·
{

24 if m ≡ 3 (mod 4),
12 otherwise.

In fact, Gauss stated something equivalent to (6c), but did not give a clear-cut
statement in the form (6b). His proof is long and roundabout. In order to study
a ternary equation xΦ · tx = q, he considered the representation of a binary form
by another ternary form, namely an equation ξΨ · tξ = η, where Ψ is such that
Φ = − det(Ψ)Ψ−1 and η is a (2 × 2)-matrix that represents a given binary form.
This technique was initiated earlier by Legendre in [13] for Ψ = 13, and he almost
proved the results of Gauss, including the one on three triangular numbers. Though
Gauss rigorously proved them, it must be remembered that he was not so original
in this respect. In any case, there is a simpler method, as we will show later, and
so we are tempted to say that in a sense Gauss was misled by Legendre’s work.
Without [13] he might have found a different, possibly shorter, proof, but of course
we cannot change history, and, after all, the idea worked.

Gauss was not the only person “misled” by Legendre; indeed, Eisenstein and
Minkowski employed the same method in dealing with #L0[q] when ϕ is the sum
of five squares. But our aim is to present new ideas which are more straightforward
than their approach, and so we will not explain how they obtained their results,
which are splendid in spite of the seeming awkwardness of the method. The reader
is referred to Bachmann’s book [1] for an exposition of this subject; see also [22,
p. 137, lines 18–23] for an interpretation of their methods.

History aside, our point is that there is an unmistakable parallelism between (5b)
and (6b). Therefore we can expect the existence of a general principle of which (5b)
and (6b) are special cases. In the above two cases, n = 3 and binary forms have
two variables, and so the expected principle may be of the following type:

(7) #
{
L0[q]/Γ (L)

}
equals the class number of an object in dimension n − 1.

But things are not that simple, though the idea of (7) is basically right. Also, we
can seek an n-dimensional generalization of (6c), but that requires the concept of
“mass”. To make precise statements, we first put

(8) L[q, Z] =
{
x ∈ V

∣∣ ϕ[x] = q, ϕ(x, L) = Z
}
.

This will replace L0[q]. Notice that L[q, Z] is not defined as a subset of L[q]. If
ϕ[x] = xΦ · tx with Φ = (cij) and L = Zn, then ϕ(x, L) =

∑n
i=1

( ∑n
j=1 cijxj

)
Z.

In particular, if ϕ[x] =
∑n

i=1 x2
i and L = Zn, then L0[q] = L[q, Z]. Next, we call
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L ϕ-maximal, or simply maximal, if L is the only integral lattice containing itself.
The lattice Z3 is maximal with respect to ϕ of (6a). As for ϕ of (5a), if we denote
by Λ the set of all (ξ, η, ζ) ∈ Q3 such that 2ξ, 2η, ζ ∈ Z, then we easily see that Λ
is maximal with respect to (5a) and (Z3)0[q] = Λ[q, Z]. Thus one of our key ideas
is to consider L[q,Z] with a maximal L in place of L0[q].

Now the precise version of (7) is the first of the following two formulas, which
form the principal results whose explanation is the main objective of this article:∑

i∈I

#
{
Li[q, Z]/Γ (Li)

}
= the class number of a group H,(9a)

∑
i∈I

#{Li[q, Z]}/#Γ (Li) = the mass of H if ϕ is definite,(9b)

provided L is maximal and L[q, Z] �= ∅. Formula (9b) is a generalization of (6c).
We have to explain what {Li}i∈I , H, the class number, and the mass are. To

define H, we first pick h ∈ L[q, Z] and take the orthogonal complement W of Qh,
which we write (Qh)⊥ and which is defined by

(10) W = (Qh)⊥ =
{
y ∈ V

∣∣ ϕ(h, y) = 0
}
.

Clearly dim(W ) = n − 1. Now the group H in (9a, b) is given by H = SOϕ(W ),
where we use ϕ also for its restriction to W. We view H as a subgroup of SOϕ(V )
by putting

(11) H = SOϕ(W ) =
{
α ∈ SOϕ(V )

∣∣hα = h
}
.

In the next section we shall explain what {Li}i∈I , the class number, and the mass
are. Before doing so, we should mention a natural question: Is #

{
L0[q]/Γ (L)

}
or

#
{
L[q, Z]/Γ (L)

}
really finite? If ϕ is positive or negative definite, then Γ (L),

L[q], and L[q, Z] are finite sets, as can easily be seen, and so the matter is trivial.
But the finiteness of #

{
L[q]/Γ (L)

}
for indefinite ϕ is nontrivial. There is a similar

question about the equation ξΦ · tξ = Ψ , mentioned above, over a number field.
Namely, fixing a lattice Λ in the space of (m × n)-matrices, we ask whether the
orbit of all such ξ ∈ Λ under the stabilizer of Λ in SO(Φ) is finite. We can even ask
the same type of question over a nonarchimedean completion of F. The answer is
indeed affirmative in both global and local cases; see [22, Theorems 13.2 and 13.3].

Such finiteness results, when F = Q, were known to Siegel; also they are implicit
in the convergence of the Siegel-Weil formula, though that requires the convergence
condition. He always said that the fact followed from reduction theory ([27, p. 399],
for example), which is true, but he never bothered himself with its proof until very
late. Indeed, in [28], he treated the question of finding ξ satisfying ξΦ · tξ = Ψ over
Z in the classical style of Lagrange; his answer includes the finiteness. It is as if he
did not wish to cause later researchers to complain about this point. In any case,
the facts are nontrivial, and the local case does not seem to have been previously
stated.

There is another natural question: why do we consider L0[q] or L[q, Z] instead
of L[q]? Before answering this question, we note here a result about #L[q] for ϕ of
(6a) given in [21, p. 1067]. Let q = 2νr2t with 0 ≤ ν ∈ Z and odd positive integers
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r and t, t squarefree. Let r =
∏

p pλp be the prime decomposition of r. Then

(∗) #L[q] =

⎧⎪⎪⎨⎪⎪⎩
0 if ν ∈ 2Z and t − 7 ∈ 8Z,

Aπ−1L(1, ψ)rt1/2
∏∗

p

⎧⎨⎩
λp∑

k=0

p−k − ψ(p)
λp∑
i=1

p−i

⎫⎬⎭ otherwise,

where A is 24 or 24
√

2 according to whether ν ∈ 2Z or ν /∈ 2Z, ψ is the primitive
Dirichlet character corresponding to Q(

√−q ), and
∏∗

p is the product over all the
prime factors p of r such that ψ(p) �= 1. Notice that L(1, ψ) is the class number of
Q(

√−q ) times an elementary factor (as shown by (13a) below), and so (∗) is similar
to (6c) to some extent but far more complex. In general the formula for #L[q] for
a definite ϕ, when n is odd, is as complicated as, and often more complicated
than, (∗), whereas we have simpler formulas for L0[q], as can be seen from (9a).
Besides, the proof of (9a) gives a conceptual explanation why the class number is
involved, but we cannot do that for L[q] except in some special cases. This is the
main reason for our discussing L[q, Z] and L0[q].

2. The class number and mass of an orthogonal group

We are going to define the class and genus of a lattice in V. Fixing (V, ϕ) over
Q, put G = SOϕ(V ). For each prime number p we put Vp = V ⊗Q Qp, extend ϕ
to a symmetric form ϕp : Vp ×Vp → Qp, and put Gp = SO(Vp, ϕp). For a lattice L
in V, we denote by Lp the Zp-linear span of L in Vp, which is a Zp-lattice in Vp.

Two lattices L and M in V are said to belong to the same G-class if M = Lα
with α ∈ G. They belong to the same G-genus if Mp = Lpαp with some αp ∈ Gp

for every prime number p. Now here is a basic fact:

(12) The G-genus of L consists of a finite number of G-classes of lattices.

This follows from reduction theory of Minkowski. We can define the genus and
class of a g-lattice in the case of an arbitrary number field F in a similar way by
taking nonarchimedean completions of F in place of Qp. Then (12) holds. We can
define the G-class and G-genus for an algebraic group G over F of a more general
type acting on V. Then (12) holds; see [2] for the result in the most general case.

Originally the genus and class were defined in terms of matrices; see [25], for
example. They can easily be translated into those in terms of lattices defined as
above, provided F has class number 1. The reader is referred to [22, §9.27] for the
explanation.

Now the number of classes in the genus is called the class number of the genus.
But this depends on the choice of L, or rather, of a genus of lattices. However,
all maximal lattices form a single G-genus, and so the number of G-classes in that
genus is well defined. Therefore we may call it the class number of (V, ϕ), or
even the class number of G. But the latter definition is somewhat misleading, as
SOϕ(V ) = SOcϕ(V ) for every c ∈ F×, and a ϕ-maximal lattice may not be cϕ-
maximal. A better alternative is to define the class number in terms of a certain
subgroup of the adelization of G, which will be explained in Section 4.

Returning to (9a), {Li}i∈I is a complete set of representatives for the G-classes
in the G-genus of a fixed maximal lattice L, where G = SOϕ(V ). The right-hand
side is actually the number of H-classes in the H-genus of L. Since the group H acts
on the vector space W of (10), taking a maximal lattice M in W, we can consider
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the number of H-classes in the H-genus of M, but this may not be equal to the
number of H-classes in the H-genus of L, and so (9a) is not a precise statement,
though the two class numbers often coincide.

If the class number of G is 1, then the left-hand side of (9a) or (9b) consists
of a single term, which is the case for the forms of (5a) and (6a), and so (5b)
and (6b) are special cases of (9a). In those two cases the group H is given by
H =

{
x ∈ K× ∣∣ NK/Q(x) = 1

}
with K = Q(

√−q ), and there is a simple relation
between the class number of H and that of K.

The proof of (9a) is not so short, but it is conceptually straightforward; we can
at least say that it is not as painful as the proof of (6c) by Gauss. But postponing
the proof, let us now explain what the mass means.

The mass formula for an orthogonal group when n = 2 is actually Dirichlet’s
formulas for the class number hK of a quadratic field K. Let us state them here
in the forms given in modern textbooks, not in the original style of Dirichlet. Let
χ(a) =

(
d
a

)
for a ∈ Z, where d is the discriminant of K (and so K = Q(d1/2)), and

let L(s, χ) =
∑∞

m=1 χ(m)m−s with a complex variable s. This series is convergent
for Re(s) > 1 and can be continued to an entire function. We have then

hK · w−1 = (2π)−1|d|1/2 · L(1, χ) if d < 0,(13a)

hK · log ε = 2−1|d|1/2 · L(1, χ) if d > 0.(13b)

Here w is the number of roots of unity in K. For d > 0, we fix an embedding of
K into R and take a fundamental unit ε > 1 in K. We can view these as special
cases of the formula for the residue of the Dedekind zeta function at 1, due to
Dedekind himself, which is also a kind of mass formula, but let us restrict ourselves
to orthogonal groups.

The idea of the mass of a genus for n > 2 goes back to Eisenstein and Minkowski.
We state here the mass formula essentially in Siegel’s style, though we employ the
definition of the mass introduced in [17] and [18]. Given a lattice L in V, we define
the mass of G = SOϕ(V ) relative to L (or the mass of the genus of L with respect
to G) to be the quantity given by

m(G, L) =
∑
i∈I

ν(Γi), Γi = Γ (Li),(14a)

ν(Γ ) =

{
[Γ : 1]−1 if ϕ is definite,
vol(Γ\Z)/#

(
Γ ∩ {±1}

)
otherwise.

(14b)

Here L is not necessarily maximal, {Li}i∈I is a complete set of representatives for
the G-classes in the G-genus of L, and Z is the symmetric space on which G has a
natural action; we fix a G-invariant measure on Z. Siegel showed (for an integral
L = Zn) in [25] and [26] that

m(G, L) = d∞
∏
p

dp,(15)

dp = lim
m→∞

p−mn(n−1)/2#
{
α ∈ GLn

(
Zp/(pm)

) ∣∣ αϕ · tα ≡ ϕ (mod pm)
}
.(16)

In fact, the right-hand side of (16) becomes constant for sufficiently large m. The
number dp is called the representation density at p; d∞ is defined suitably; see [26,
pp. 410–412]. But Siegel did not give a precise form of the right-hand side of (15),
though he computed d∞ and dp for p not dividing 2 det(ϕ). An exact formula for
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m(G, L) when L is maximal was given in [18]. To state it, we need a few basic facts
on the classification of (V, ϕ) over Q. We first put δ(ϕ) = (−1)n(n−1)/2 det(ϕ) and
call it the discriminant of ϕ. This is determined modulo the squares of the elements
of Q×. Next, the signature of ϕ as a real quadratic form is an obvious invariant. In
addition, for each prime number p, once n and δ(ϕ) are given, there exist only a
finite number of quadratic spaces over Qp, which can be explicitly described. Now
(V, ϕ) over Q is completely determined by the signature of ϕ and (Vp, ϕp) for all
p, a fact called the Hasse principle. These results can be found in almost any book
on quadratic forms, [6] or [22, Section 7], for example.

To state the formula for m(G, L), fix a maximal lattice L and denote by ϕ0 the
matrix that represents ϕ with respect to a Z-basis of L. Then [18, Theorem 5.8]
gives

(17) m(G, L) = A · det(2ϕ0)µ
∏
p

λp ·
{

1 if n /∈ 2Z,

L(n/2, ψ) if n ∈ 2Z.

Here A is an elementary constant depending only on n, δ(ϕ), the signature of ϕ,
and the choice of the measure on Z; µ = (n−1)/2, p runs over the prime factors of
det(2ϕ0), λp is a rational number determined by (Vp, ϕp), and ψ is the primitive
Dirichlet character corresponding to Q

(
δ1/2

)
, δ = (−1)n/2 det(ϕ0). The proof of

(17) relies on the fact that the mass is the residue of a certain zeta function on G,
and that residue can be obtained by computing the residue of an Eisenstein series
on a split orthogonal group. This may be viewed as a byproduct of the general
theory of such zeta functions and is different from Siegel’s proof of (15).

Suppose that the ν(Γi) are the same for all i. (This is the case if n = 2, as G
becomes commutative.) Then we obtain

#I · ν(Γ1) = the right-hand side of (17).

If n = 2, this is essentially the same as (13a) or (13b), as #I = 22−thK if d > 0
and N(ε) = 1, and #I = 21−thK otherwise, where t is the number of prime factors
of d and ε is a fundamental unit of K; see [22, 9.16].

In general ν(Γi) can take many different values, and so we cannot prove a clear-
cut formula for #(I). We have formulas for their sum which generalize (13a, b).

If ϕ is indefinite, then vol(Γ\Z) plays the role of log ε. In that sense (14a)
combined with (15) is of the same nature as (13a, b), though (13a, b) are simpler.
In any case, for n > 2 there is a formula for m(G, L) like (17), but no such formula
exists for the class number. In general, it is difficult to find the class number of an
orthogonal group. However, by means of formula (9a), we can determine the class
number in certain cases by counting the number #

{
L[q, Z]/Γ (L)

}
. We will give

examples in Theorem 3.
But before discussing this, let us note another result of Siegel concerning #L[q].

To make our exposition easier, we introduce the notion of the mass of a subset X

of V, written m(X). We take a set X of the form X =
⊔k

j=1 hβjΓ with Γ = Γ (L)
and a finite subset {βj} of G. Then we put

(18) m(X) =
k∑

j=1

ν(∆j)/ν(Γ ), ∆j = βjΓβ−1
j ∩ H.
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It can easily be seen that m(X) = #X if ϕ is definite. Now, for L = Zn Siegel
showed in [25] and [26] that

m(G, L)−1
∑
i∈I

ν(Γi)m
(
Li[q]

)
= e∞

∏
p

ep, Γi = Γ (Li),

ep = lim
m→∞

pm(1−n)#
{
x ∈

(
Z/pmZ)n

∣∣ ϕ[x] − q ∈ pmZ
}
.

(19)

The right-hand side becomes constant for sufficiently large m. The number ep is
called the representation density of q by ϕ at p; e∞ is a similar density at ∞
defined by means of certain volumes. Thus, if ϕ is definite, then

(20)

{∑
i∈I

[Γi : 1]−1

}−1 ∑
i∈I

[Γi : 1]−1#Li[q] = e∞
∏
p

ep.

In particular, if #I = 1, then #L[q] = e∞
∏

p ep. If #I > 1, however, only the
weighted average of

{
#Li[q]

}
i∈I

can be given.
How can one compute e∞

∏
p ep? Siegel did a few easy cases. An explicit formula

was given in [19] when F is totally real, ϕ is totally definite, and L is maximal:

(21) e∞
∏
p

ep = Bq(n−2)/2
∏′′

p

εp ·
{

L(n/2, ψ)−1 (n∈2Z),
L

(
(n − 1)/2, ψq) (n /∈2Z).

Here B is an elementary factor depending only on ϕ and independent of q; εp

is a rational expression in pn/2;
∏′′

p is the product over all prime factors p of
q · det(2ϕ0), where ϕ0 is as in (17); ψ is the same as in (17); ψq is the primitive
Dirichlet character corresponding to Q(κ1/2), where κ = qδ(ϕ). The lattice L must
be maximal. We prove (21) by using the fact that e∞

∏
p ep is a Fourier coefficient

of a certain Eisenstein series. Thus the weighted average is computable by means of
(21), but there is no formula for each individual #Li[q] in general (unless #I = 1).
In fact, however, the quantity of (21) is a good approximation to #Li[q]. These
points will be explained in Section 6. Also, it should be mentioned that (21) does
not apply to the case of the sum of n squares with L = Zn if n > 3, as Zn is not
maximal in such cases. Even so, the problem can be handled, as will be explained
in Section 6, (R1).

3. Precise forms of the main formulas

Let us now present precise forms of (9a, b). We take (V, ϕ) over an arbitrary
number field F. (Of course the reader may assume that F = Q.) For a g-lattice Λ
in V, an element q in F×, and a fractional ideal b in F, we put

(22) Λ[q, b] =
{

x ∈ V |ϕ[x] = q, ϕ(x, Λ) = b
}
.

If F = Q, we take b = rZ with r ∈ Q×; thus (22) includes (8) as a special case. It
should be noted that Λ[q, b] is not necessarily contained in Λ, even when b ⊂ g.

We fix a maximal lattice L, take h ∈ V such that q = ϕ[h] �= 0, and put
b = ϕ(h, L). (This means: take q and b so that L[q, b] �= ∅, and take h ∈ L[q, b].)
Put W = (Fh)⊥, that is,

(23) W =
{
x ∈ V

∣∣ ϕ(h, x) = 0
}
.
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Then put G = SOϕ(V ) and H = SOϕ(W ), where we use the letter ϕ also for its
restriction to W. We view H as a subgroup of G as in (11). From Witt’s theorem
on quadratic forms we easily obtain

(24) #
{
{x ∈ V

∣∣ ϕ[x] = q}/G
}
≤ 1 if q �= 0 andn > 1.

Since H acts on V, we can define the H-class and the H-genus of a lattice in V.
Now (9a, b) can be given in stronger and more precise forms as follows.

Theorem 1. Let L, h, b, W, and H be as above. Let {Li}i∈I be a complete set of
representatives for the G-classes in the G-genus of L. Then there exists a bijection
from

⊔
i∈I

{
Li[q, b]/Γ (Li)

}
onto the set of H-classes in the H-genus of L, and

therefore∑
i∈I

#{Li[q, b]/Γ (Li)} = the number of H-classes in the H-genus of L.(25)

∑
i∈I

#Li[q, b]/#Γ (Li) = the mass of H relative to L if ϕ is totally definite.(26)

Here the total definiteness means that F is totally real and ϕ is positive or
negative definite at all archimedean primes of F . The mass of H relative to L is∑

j∈J [∆(Mj) : 1]−1, where {Mj}j∈J is a complete set of representatives for the
H-classes in the H-genus of L and ∆(Mj) =

{
α ∈ H

∣∣ Mjα = Mj

}
. This is similar

to (14a).
If {Li}i∈I consists only of L (which is the case in the setting of (5a, b) or (6a,

b)), the left-hand side of (25) is #
{
L[q, b]/Γ (L)

}
, and equality (25) in this case is

a precise version of (7). In general, Li[q, b] may be empty for some i ∈ I.
The bijection in the theorem can be given as follows. Given k ∈ Li[q, b], we can

find, by (24), an element α of G such that k = hα. Then we can show that Liα
−1

belongs to the H-genus of L, and so we assign the H-class of Liα
−1 to k. This

gives the desired bijection.
The crucial point in the proof of Theorem 1 is the following local result.

Theorem 2. Let L be a maximal lattice in V and p a prime number. If h, k ∈
Vp, ϕ[h] = ϕ[k], and ϕ(h, Lp) = ϕ(k, Lp), then there exists an element γ of
SO(Vp, ϕp) such that hγ = k and Lpγ = Lp.

In other words, the local analogue of L[q, b], if nonempty, consists of a single
orbit under the local analogue of Γ (L). The fact can be generalized to the case of
a number field. This theorem is stated in [22, Theorem 10.5] under the condition
that det(ϕp) is a square times a unit if n is odd, but actually that condition is
unnecessary, as will be shown in [24]. In any case, the proof of Theorem 2 is long.
We first classify the structures (V, ϕ, L) over a local field F as follows. Denoting
by g the valuation ring of F, we can put

V =
r∑

i=1

(Fei + Ffi) ⊕ Z, L =
r∑

i=1

(gei + gfi) ⊕ M,

2ϕ(ei, fj) = δij , ϕ(ei, ej) = ϕ(fi, fj) = 0, 0 ≤ n − 2r = t = dim(Z) ≤ 4.

ϕ[z] �= 0 if 0 �= z ∈ Z, M is a maximal lattice in Z.

The structure (V, ϕ, L) is determined by (r, Z). If we denote by ζ the restriction
of ϕ to Z, then (Z, ζ) is determined by δ(ζ) if t �= 2; for t = 2, there are exactly
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two types of (Z, ζ) with the same δ(ζ). (For these, see [6] and [22, §§6 and 7].) Then
we prove Theorem 2 (in a generalized form) for each type of (V, ϕ, L); we have to
treat the cases separately according to the nature of the ideal qg and also to whether
or not the prime ideal p divides 2. For instance, take the simplest case in which
ϕ[h] = q ∈ Z×

p , p �= 2, and ϕ(h, Lp) = Zp. Then we have Lp = Zph⊕
(
Lp∩(Qph)⊥

)
,

from which we easily obtain the desired fact.
Once Theorem 2 is established, Theorem 1 can be proved easily; see the proof

of [22, Theorems 11.6 and 13.12]. Also, Theorem 2 is analogous to the fact that
every local ideal is a principal ideal; that is, the local class number is always 1. It
may be emphasized that the proof of Theorem 1 is purely arithmetic and involves
no analysis. Formulas (5b) and (6b) are special cases of (25), and (6c) is a special
case of (26). In such cases, H =

{
x ∈ K

∣∣ NK/Q(x) = 1
}

with a quadratic field K.
If F = Q and g = Z, it is natural to consider L[q, Z], but the matter is not so

simple. First of all, it is a highly nontrivial question to determine for which value
of q the set L[q, Z] is not empty, as can be seen from the case of the sum of three
squares. Indeed, it is nontrivial, if elementary, to settle this point and to show
that the right-hand side of (25) in this case can be given as in (6b); the reader is
referred to [22, pp. 118–119]. Next, it is not always best to formulate the result with
respect to a Z-basis of L. We will illustrate these points by numerical examples in
Theorem 6.

Let us now state several consequences of Theorem 1 in the following four theo-
rems.

Theorem 3. (i) Suppose n ≥ 7 and the class number of F in the narrow sense is
odd. Suppose also that ϕ represents 0 nontrivially at an archimedean prime of F,
and the same holds for the restriction of ϕ to W. Then #

{
L[q, b]/Γ (L)

}
= 1.

(ii) Suppose F = Q and ϕ[x] =
∑n

i=1 x2
i with n = 5, 7, or 9. Let L be a

maximal Z-lattice in V = Qn and q an odd prime number. If n > 5, suppose
q = |dK |, where dK is the discriminant of K = Q(

√
κ ), κ = (−1)(n−1)/2q. Then

L[q, Z] �= ∅, and #
{
L[q, Z]/Γ (L)

}
equals the class number of SO(ψ) with respect

to the stabilizer of a maximal lattice in Qn−1, where ψ = diag[1n−4, q13].

For the proof, see [22, Lemma 12.13, Theorems 12.1 and 12.14]. We note here
only that (i) follows from (25) combined with strong approximation.

It seems that the result of Dedekind mentioned in the paragraph after (5b) has
not been generalized in a clear-cut form over an arbitrary algebraic number field
F. Therefore let us now consider binary forms ax2 + bxy + cy2 over F and present
a generalization of (5b). We consider (V, ϕ) by taking V =

{
h ∈ M2(F )

∣∣ th = h
}

and by putting ϕ[h] = det(h) for h ∈ V. We associate the element

h =
[

a b/2
b/2 c

]
of V to the form ax2+bxy+cy2; then −ϕ[2h] = b2−4ac, which is the discriminant of
the binary form. For Λ = M2(g)∩V, an element q ∈ F×, and a fractional ideal b we
consider the elements h ∈ V such that ϕ[h] = q and ϕ(h, Λ) = b, which constitute
the set Λ[q, b]. Let ∆ be the group of all transformations x �→ det(α)−1 · tαxα with
α ∈ GL2(g). Then we can prove:

Theorem 4. Suppose Λ[q, b] �= ∅ and −q is not a square in F . Then there exists
an order f of discriminant qb−2 in the field F (

√−q ). Moreover, #
{
Λ[q, b]/∆

}
=
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εc(f)/cF , where c(f) is the class number of f, cF is the class number of F, ε = 2 if
all archimedean and nonarchimedean primes of F are unramified in F (

√−q ), and
ε = 1 otherwise.

Though this is essentially a special case of (25), we need to reformulate it in
terms of the even Clifford group of (V, ϕ); see [22, Theorem 12.9]. If F = Q and
b = Z, Theorem 4 gives the result of Dedekind and also (5b). It can be shown
that [Γ (Λ) : ∆] equals the number of the ideal classes in F whose squares are the
principal class; see [22, Lemma 12.10]. Also, if qb−2 is the discriminant of an order
in F (

√−q ) and cF is odd, then Λ[q, b] �= ∅, but in general Λ[q, b] can be empty
even when such an order exists.

Theorem 5. Let n, ϕ, and L be as in Theorem 3 (ii); let K = Q(
√

κ ), κ =
(−1)(n−1)/2q, with a squarefree positive integer q; let L(s, χ) be the L-function of
the primitive Dirichlet character χ corresponding to K. Then

#L[q, 2−1Z] = An(q)q(n−2)/2(2π)−mL(m, χ),

#L[q, Z] = cn(q) · #L[q, 2−1Z].

Here m = (n − 1)/2, 0 < An(q) ∈ Z, and 0 ≤ cn(q) ∈ Q; the numbers An(q) and
cn(q) are determined explicitly by q (mod 8) and n. For example,

A7(q) = 29 · 32 · 7 and c7(q) = 0 if q − 3 /∈ 4Z,

A9(q) = 29 · 32 · 5 · 17 and c9(q) = 1/136 if q − 5 ∈ 8Z.

This theorem will be explained in Section 6, (R2).
As we said earlier, it is not always best to formulate the result with respect to a

Z-basis of L. To see this, first take the standard basis {ei}n
i=1 of Zn = L and define

a matrix Φ by Φ = [ϕ(ei, ej)]ni,j=1; put fi = eiΦ
−1 and

L̃ =
{

x ∈ V | 2ϕ(x, L) ⊂ Z
}
.

Then 2L̃ =
∑n

i=1 Zfi and Γ (L̃) = Γ (L). Let h ∈ L[q, Z] with q ∈ Q×. Then
h ∈ 2L̃, and so h =

∑n
i=1 aifi with ai ∈ Z. We easily see that h ∈ L[q, Z] if and

only if
∑n

i=1 aiZ = Z, and also that Φ−1 = [ϕ(fi, fj)]ni,j=1. This means that

L[q, Z] =

{
h =

n∑
i=1

aifi

∣∣ aΦ−1 · ta = q,
n∑

i=1

aiZ = Z

}
, a = (ai)n

i=1.

Therefore if we follow the traditional definition of primitivity, we have to use the
matrix Φ−1 instead of Φ. Take, for example, n = 3 and

2Φ = diag
[
2,

[
4 −1
−1 2

] ]
, 7Φ−1 = diag

[
7,

[
4 2
2 8

] ]
.

Then the result about L[q, Z] can be stated in terms of the equation aΦ−1 · ta =
q = s/7 with s ∈ Z and a ∈ Z3 as follows.

Theorem 6. For 0 < s ∈ Z put K = Q(
√
−s ). Then a vector (a, b, c) such that

7a2 + 4(b2 + bc + 2c2) = s and aZ + bZ + cZ = Z

exists if and only if s = r2m with a positive integer r and a squarefree positive
integer m such that 7 does not split in K, 7 � r, and 2|r if m + 1 /∈ 4Z. Moreover,
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the number of such (a, b, c) equals

23−µhK

w
· f

∏
p|f

{
1 −

(
−m

p

)
p−1

}
.

Here w is the number of roots of unity in K, µ = 1 if 7|m and µ = 0 otherwise,
hK is the class number of K, f = r if m + 1 ∈ 4Z and f = r/2 otherwise.

In fact, this concerns one of the 30 ternary forms for which we can determine
exactly when L[q, Z] �= ∅ and also #L[q, Z]. The details will be given in [24].

4. Formulation in terms of adeles and generalizations

Let us now formulate various things in terms of the adelization GA of G, assum-
ing that the reader is familiar with that notion. An easy introduction to this topic
can be found in [17, Section 8]. We denote by a and h the sets of archimedean
primes and nonarchimedean primes of F respectively, and put v = a∪h. Given an
algebraic group G defined over F, we define Gv for each v ∈ v and the adelization
GA as usual and view G and Gv as subgroups of GA. (We do not use the symbol
GQ or GF .) We then denote by Ga and Gh the archimedean and nonarchimedean
factors of GA, respectively. For x ∈ GA we denote by xv its projection to Gv.

Take G = SO(ϕ), though we can take G to be an arbitrary reductive algebraic
subgroup of GL(V ). For x ∈ GA and a lattice L in V we denote by Lx the lattice
in V such that (Lx)v = Lvxv for every v ∈ h. Define a subgroup U of GA by U ={
x ∈ GA

∣∣ Lx = L
}
. This means U = Ga

∏
v∈h Uv, Uv =

{
x ∈ Gv

∣∣ Lvx = Lv

}
.

Clearly xU �→ Lx−1 gives a surjection of GA/U onto the genus of L. Therefore
the map gives a bijection of G\GA/U onto the set of classes in that genus. Thus
#(G\GA/U) is the class number of the genus of L.

More generally, given an open subgroup D of GA containing Ga and such that
D ∩ Gh is compact, we put Γ a = G ∩ aDa−1 for every a ∈ GA. Let Ca be a
maximal compact subgroup of Ga and let Z = Ga/Ca. Then Z is a symmetric
space on which G acts through its projection into Ga. Taking a complete set of
representatives B for G\GA/D, we put

(27) m(G, D) = m(D) =
∑
a∈B

ν(Γ a).

Here ν(Γ ) is a quantity defined by

(27a) ν(Γ ) =

{
[Γ : 1]−1 if Ga is compact,
vol(Γ\Z)/#(Γ ∩ T ) otherwise,

where T =
{
α ∈ G

∣∣ α = id. on Z
}
, and we fix a Haar measure on Ga, which

determines a unique Ga-invariant measure on Z by a well known principle; see
(37) below. (We can give a uniform definition of ν(Γ ) by understanding that
vol(Γ\Z) = [Γ : Γ ∩ T ]−1 if Ga is compact.) We easily see that m(D) does not
depend on the choice of B. We call m(G, D) the mass of G relative to D. This
coincides with the mass defined by (14a) if D =

{
x ∈ GA

∣∣ Lx = L
}
. Also, #B may

be called the class number of G with respect to D. In Theorem 9 we shall give more
conceptual definitions of m(D) and ν(Γ ). If Ga is compact, we have

(28) m(G, D) = m(D) =
∑
a∈B

[Γ a : 1]−1.
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Let us now present generalizations of (25) and (26) to the case of a Diophantine
equation of the form ξΦ ·tξ = Ψ with a nonscalar Ψ mentioned in Section 1. Instead
of a matrix Ψ, take a quadratic space (X, ψ) over F of dimension m (< n), and put
V = Hom(X, V ). For u ∈ V we define ϕ[u] to be a quadratic form on X defined
by ϕ[u][x] = ϕ[xu] for every x ∈ X. (In other words, ϕ[u] = uϕ · tu.) We look
for u such that ϕ[u] = ψ. Fixing h ∈ V such that ϕ[h] = ψ, put W = (Xh)⊥,
G = SOϕ(V ), and H = SOϕ(W ). Clearly dim(W ) = n − m. We have

(29)
{
k ∈ V

∣∣ ϕ[k] = ϕ[h]
}

= h · G.

This is a generalization of (24) and follows easily from the Witt theorem. We
identify H with

{
α ∈ G

∣∣hα = h
}
. For x ∈ GA and h ∈ V the symbol hx is

meaningful as an element of VA, and so hΞ is meaningful as a subset of VA for any
subset Ξ of GA. Then V ∩ hΞ is meaningful.

Theorem 7. The symbols h, W, G and H being as above, let D = D0Ga with an
open compact subgroup D0 of Gh. Then the following assertions hold.

(i) For y ∈ GA we have HA ∩ GyD �= ∅ if and only if V ∩ hDy−1 �= ∅.
(ii) Fixing y ∈ GA, for every ε ∈ HA ∩ GyD take α ∈ G so that ε ∈ αyD.

Then the map ε �→ hα gives a bijection of H\(HA ∩ GyD)/(HA ∩ D) onto (V ∩
hDy−1)/Γ y, where Γ y = G ∩ yDy−1.

(iii) Take Y ⊂ GA so that GA =
⊔

y∈Y GyD. Then

(30) #
{
H

∖
HA

/
(HA ∩ D)

}
=

∑
y∈Y

#
{
(V ∩ hDy−1)/Γ y

}
.

Proof. It is not very difficult to prove (i) and (ii); the only essential point is (29).
The details of the proof will be given in [24]. Once (ii) is established, (iii) follows
from the fact that HA =

⊔
y∈Y (HA ∩ GyD). �

We are tempted to call the set V ∩ hD the genus of h. Then #
{
(V ∩ hD)/Γ

}
may be called the number of classes in that genus.

Now (30) is a generalization of (25). Before explaining that point, let us present a
generalization of (26). This requires a generalization of m(X) of (18). We consider
a subset S of V of the form S =

⊔
ζ∈Z hζΓ, where h is as above, Z is a finite subset

of G, and Γ = G ∩ D with D as in the above theorem. Then we put

(31) m(S) =
∑
ζ∈Z

ν(∆ζ)/ν(Γ ), ∆ζ = H ∩ ζΓζ−1

and call m(S) the mass of S. Here, to define ν(∆ζ), we need to fix a measure
on Ha. Thus m(S) depends on the choice of measures on Ga and Ha, but m(S)
is independent of the choice of Z and Γ, as will be shown in Section 5. (Let
Y =

{
x ∈ Va

∣∣ ϕ[x] = q
}
. Since Y can be identified with Ha\Ga, once a measure

on Ga is fixed, a measure on Y determines a measure on Ha, and vice versa. The
replacement of h by an element of hG changes the group H, but that does not
change m(S) if we start with a fixed measure on Y. Notice also that an identification
of Va with a Euclidean space determines a Ga-invariant measure on Y.) Since the
left-hand side of (30) is finite, we see that (V ∩ hDy−1)/Γ y is a finite set for every
y ∈ GA. Thus we can define m(V ∩ hDy−1) for every y ∈ GA.

If Ga is compact, we naturally take the measures of Ga and Ha to be 1. Then
m(S) can be defined in a unique way. We easily see that S =

⊔
ζ∈Z

⊔
γ∈∆′

ζ\Γ hζγ,
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where ∆′
ζ = ζ−1∆ζζ, and so #S =

∑
ζ∈Z [Γ : ∆′

ζ ] = m(S) if Ga is compact. Thus
we obtain

(32) m(S) = #(S) if Ga is compact.

Theorem 8. The notation being the same as in Theorem 7, we have

(33) m(H, HA ∩ D) =
∑
y∈Y

ν(Γ y)m(V ∩ hDy−1).

Proof. Let Ey = H\(HA ∩ GyD)/(HA ∩ D). For each ε ∈ Ey take ζε ∈ G so that
ε ∈ ζεyD. By (ii) of Theorem 7 we obtain V ∩ hDy−1 =

⊔
ε∈Ey

hζεΓ
y. Then we

obtain (33) by several lines of easy calculations; see [24] for details. �
To explain that (30) and (33) are generalizations of (25) and (26), take m = 1,

X = F, and ψ[u] = qu2 for u ∈ F with a fixed q ∈ F×. Then every element k
of V defines an element of V = Hom(F, V ) that maps u to uk. Thus we can put
V = V. Fix h ∈ V such that ϕ[h] = q ∈ F×, put G = SOϕ(V ), W = (Fh)⊥, and
H =

{
α ∈ G

∣∣ hα = h
}

= SOϕ(W ). Take {yi}i∈I ⊂ GA so that GA =
⊔

i∈I GyiD,

and put Γi = G ∩ yiDy−1
i . Then (30) and (33) can be written

#
{
H\HA/(HA ∩ D)

}
=

∑
i∈I

#
{[

V ∩ hDy−1
i

]/
Γi

}
,(34a)

m(H, HA ∩ D) =
∑
i∈I

#
{
V ∩ hDy−1

i

}
/#Γi if Ga is compact.(34b)

Here D is arbitrary, but now we fix a maximal lattice L in V and take D =
{
x ∈

GA

∣∣ Lx = L
}
. Then Theorem 2 implies that if h ∈ L[q, b], then L[q, b] = V ∩ hD.

More generally we can prove (see [24] for the proof)

(35) V ∩ hDy−1 = (Ly−1)[q, b] for every y ∈ GA if n > 2 and h ∈ L[q, b].

Combining this result with (34a, b) and putting Li = Ly−1
i , we obtain

#
{
H\HA/(HA ∩ D)

}
=

∑
i∈I

#
{
Li[q, b]

/
Γi

}
,(36a)

m(H, HA ∩ D) =
∑
i∈I

#
{
Li[q, b]

}
/#Γi if Ga is compact.(36b)

These are exactly (25) and (26). Now the sum of the left-hand side of (20) is similar
to the sum of (36b): we have Li[q, b] in (36b) instead of Li[q] in (20). But there is
another essential difference between (20) and (36b): namely the right-hand side of
(20) is the infinite product of type (19), but the right-hand side of (36b) is the mass
of an (n−1)-dimensional group H. It can happen that HA∩D =

{
y ∈ HA

∣∣ Λy = Λ
}

with a maximal lattice Λ in W. In such a case, the left-hand side of (36b) can be
given by (17) with (H, Λ) in place of (G, L). Actually m(H, HA ∩D) for a general
type of D is m(H, Λ) times a certain group index, as will be shown in Theorem 10.

5. Some more comments on the mass

Take G to be SOϕ(V ) or more generally a reductive algebraic subgroup of
GL(V ); define Z as in Section 4. We fix a Haar measure dg on Ga and a measure
dw on Z so that

(37)
∫

Ga

f(g(1))dg =
∫
Z

f(w)dw
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for every integrable function f on Z, where 1 is the origin of Z represented by
1. Now we fix a Haar measure on GA by the condition that the total measure of
G\GA is one. (Recall that G is a discrete subgroup of GA.) Then we have a well
defined measure on Gh, as GA = GaGh. For a measurable subset S of Ga, Gh, or
Z we denote by vol(S) the measure of S.

Theorem 9. Let D be a subgroup of GA of the form D = D0Ga with an open
compact subgroup D0 of Gh, and let Γ = G ∩ D. Then

m(G, D) = vol(D0)−1,(38)

ν(Γ ) = vol(Γ\Ga).(39)

Proof. The last formula is obvious if Ga is compact, so we assume that Ga is not
compact. Let F be a fundamental domain for Γ\Z and let Y =

{
g ∈ Ga

∣∣ g(1) ∈
F
}
. By (37) we have vol(F) = vol(Y ). Now we easily see that (Γ ∩ T )\Y gives

Γ\Ga, where T is as in (27a), and so vol(Γ\Ga) = [Γ ∩ T : 1]−1vol(Y ), which
proves (39). (To be precise, we have to eliminate nontrivial fixed points of Γ
from F and ignore subsets of measure 0. Alternatively, we can replace Γ by
a sugroup with no nontrivial fixed points. Then we prove (iii) of the following
theorem, which can be done in an elementary way; see [17, Lemma 24.2 (2)].)
Next, take B ⊂ Gh so that GA =

⊔
a∈B GaD. Then G\GA =

⊔
a∈B(G\GaD),

and G\GaD is represented by Γ a\aD, which can be given by (Γ a\Ga) × aD0.
Therefore vol(G\GaD) = vol(Γ a\Ga)vol(D0). We have thus 1 = vol(G\GA) =∑

a∈B vol(G\GaD) =
∑

a∈B vol(Γ a\Ga)vol(D0), which combined with (27) and
(39) proves (38). �

Theorem 10. Let D be as above, and let D′ = D′
0Ga with an open compact

subgroup D′
0 of Gh; put Γ = G ∩ D and Γ ′ = G ∩ D′. Then

(i) [Γ : Γ ′] ≤ [D : D′] < ∞ if D′ ⊂ D.
(ii) [D : D ∩ D′]m(G, D) = [D′ : D ∩ D′]m(G, D′).
(iii) [Γ : Γ ∩ Γ ′]ν(Γ ) = [Γ ′ : Γ ∩ Γ ′]ν(Γ ′).
(iv) ν(Γ ) = ν(αΓα−1) for every α ∈ G and m(D) = m(xDx−1) for every

x ∈ GA.

Proof. If D′ ⊂ D, we have [Γ : Γ ′] = [ΓD′ : D′] ≤ [D : D′] = [D0 : D′
0] < ∞,

as D′
0 is open and D0 is compact. This proves (i). The remaining three assertions

follow immediately from (38) and (39). �

Let us now show that m(S) of (31) can be defined independently of the choice
of ζ and Γ. First of all, we easily see that ζ can be replaced by any element of
HζΓ with the same value of ν(∆ζ). Now let Γ ′ = G∩D′ with D′ as in Theorem 10
contained in D. Then hζΓ =

⊔
α∈A hζαΓ with A = ζ−1∆ζζ\Γ/Γ ′. Put Eα =

H ∩ ζαΓ ′α−1ζ−1. By (iii) above we have

(∗)
∑
α∈A

ν(Eα)/ν(Γ ′) =
∑
α∈A

[∆ζ : Eα]ν(∆ζ)/ν(Γ ′) =
ν(∆ζ)

ν(Γ )[Γ : Γ ′]

∑
α∈A

[∆ζ : Eα].

We easily see that ζ−1∆ζζαΓ ′ =
⊔

β∈Bα
βαΓ ′ with Bα = ζ−1∆ζζ\ζ−1Eαζ. Thus∑

α[∆ζ : Eα] =
∑

α #Bα = [Γ : Γ ′], and so the quantity of (∗) equals ν(∆ζ)/ν(Γ ).
This proves that m(S) defined with respect to Γ ′ gives the same value as (31) as
expected.
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6. Additional comments on formula (21) and some remarks

Let us now discuss how to obtain (21) and also add various related facts. As-
suming F = Q and ϕ to be definite, take a Z-lattice L in V and take {Li}i∈I as
in (14a). We then put

θi(z) =
∑
x∈Li

exp
(
2πiϕ[x]

)
=

∑
q∈Q

#Li[q]e2πiqz, z ∈ C, Im(z) > 0,(40)

f(z) =
{∑

i∈I

[Γi : 1]−1
}−1 ∑

i∈I

[Γi : 1]−1θi(z) =
∑
q∈Q

b(q)e2πiqz,(41)

where Γi = Γ (Li). Then θi is a modular form of weight n/2; see [15]. Formula
(20) shows that b(q), if nonzero, equals e∞

∏
p ep.

Theorem 11. (i) f is an Eisenstein series.
(ii) θi − f is a cusp form.

Proof. For n > 4 Siegel proved (i) in [25, Satz 3]; (ii) was also shown in [25,
p. 376]. An easier proof of (ii) valid even in the Hilbert modular case is given in
[20, Theorem A4.3 (2)]. To prove (i) in general, we first note that

(42) f(z) =
∫

G\GA

θ(z, g)dg,

( ∫
G\GA

dg = 1
)

,

where θ(z, g) =
∑

x∈Lg−1

exp
(
2πiϕ[x]

)
(g ∈ GA).

Indeed, let D =
{
x ∈ GA

∣∣ Lx = L
}

and GA =
⊔

i∈I GaiD. Then we can take
La−1

i as Li. Putting Γ a = G ∩ aDa−1 as in Section 4, we have Γ ai = Γi. Since
G\GA =

⊔
i(G\GaiD) and G\GaD can be given by Γ a\aD as observed in the

proof of Theorem 9, we have∫
G\GA

θ(z, g)dg =
∑
i∈I

∫
Γi\aiD

θ(z, g)dg.

Clearly θ(z, g)= θi(z) if g∈aiD, and so the last sum equals
∑

i vol(Γi\aiD)θi(z)
=

∑
i vol(D0)vol(Γi\Ga)θi(z) for the reason explained in the proof of Theorem 9.

This combined with (38) and (39) gives (42). Now by virtue of the Siegel-Weil
formula [30] we have, for n > 4,

(43)
∫

G\GA

θ(z, g)dg = an Eisenstein series explicitly depending on(ϕ, L).

This proves (i) for n > 4. This is true even for 2 ≤ n ≤ 4 by virtue of [11] and [14];
see also the explanation of this point in [19, pp. 86–87]. �

Now there is a technique of expressing each Fourier coefficient of an Eisenstein
series as an infinite product of local integrals; see [17], [20], and the author’s papers
cited there. This gives a proof of the equality b(q) = e∞

∏
p ep, with each ep given

as a local integral; for details, see [19]. Thus, as we said, the number of (21) is
computable in that sense, but not #Li[q] (unless #I = 1). Next, here are two
basic facts on an arbitrary elliptic modular form h(z) =

∑
q∈Q aqe

2πiqz of weight
k, where 0 < k ∈ 2−1Z :
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(A) There is a constant M depending only on h such that |aq| ≤ Mqk for
every q ∈ Q, > 0. Moreover, if h is a cusp form, then M can be taken so that
|aq| ≤ Mqk/2 for every q ∈ Q, > 0.

(B) There exist an Eisenstein series h0 and a cusp form h1 such that h =
h0 + h1. Moreover, such h0 and h1 are unique for h.

These are due to Hecke when k ∈ Z. The proof for an arbitrary k ∈ 2−1Z, even
in the Hilbert modular case, can be found in [20, Proposition A6.4] and [16].

Thus the decomposition θi = f + (θi − f) is an expression of type (B); also the
estimate given in (A) means that f is “the dominant part” of θi. Consequently
b(q) gives #Li[q] asymptotically.

Let us now add some remarks and a few problems.
(R1) The exact formulas (17) and (21) have been obtained when L is maximal.

Now take ϕ[x] =
∑n

i=1 x2
i . Then the lattice Zn is maximal if and only if n ≤ 3,

and therefore (21) is not applicable if n > 3. However, the problem can be reduced
to the case of maximal lattices for such a ϕ, and so we can give exact formulas for
b(q) not only when L is maximal but also when L = Zn. It is classically known
that the genus of Zn has class number 1 for 1 ≤ n ≤ 8. It can also be shown that
the genus of maximal lattices has class number 1 for 1 ≤ n ≤ 9. Thus, in all such
cases we have explicit (and computable) formulas for #L[q]. For details the reader
is referred to [21]. Also, we can take, instead of a lattice L, a coset M = L + y
with y ∈ V and define the genus, class, and mass with respect to M. Moreover, we
can define the analogues of θi and f by taking M in place of L. Then Theorem 11
holds in that case. Formula (20) and what we said about b(q) can be generalized
too. The results can be used for the question about the representation of integers
as sums of polygonal numbers. For all these, see [23].

(R2) Still with ϕ[x] =
∑n

i=1 x2
i , let us now explain how to obtain #L[q, Z] and

#L[q, 2−1Z] as stated in Theorem 5. Here L is maximal. For n ≤ 9 formula (36b)
shows that #L[q, b]/#Γ (L) = m(H, HA ∩ D), provided L[q, b] �= ∅. Take q to
be an odd prime number and n = 5, 7, or 9. Then HA ∩ D is the stabilizer of a
maximal lattice in W, and so m(H, HA ∩ D) is computable by means of (17) with
H as G there. Also L[q] = L[q, Z]∪L[q, 2−1Z] if q is a squarefree positive integer.
Now the formulas of Theorem 5 can be obtained by combining these facts and using
Theorem 10 (ii); for details the reader is referred to [22, Theorem 13.14], where all
the values of An(q) and cn(q) are given.

(R3) The determination of #Zn[q] for ϕ[x] =
∑n

i=1 x2
i is a subject investigated

by many mathematicians. We mention here only the paper [8] by Hardy, in which
the problem was treated by the circle method. Also, the introduction of the paper
includes a short history of the problem. The case of even n can be handled with-
out difficulties, but for odd n he obtained only #(Zn)0[q] for n = 5 and 7, but
not #Zn[q]. His idea was all right, but there were nontrivial mistakes, as Stanley
pointed out in her paper [29] on #(Zn)0[q] for n = 7. Hardy’s own corrections
were published in [9]. In his later articles on this topic he cited only [8] and never
mentioned [9] or [29].

(R4) There is an old and natural method of treating the sum of three squares.
Namely we consider a quaternion algebra B = Q+Qi+Qj+Qk with the standard
Hamilton quaternion units i, j, k. If 0 �= q = a2 + b2 + c2 with a, b, c ∈ Z, then
ai+ bj + ck generates a subfield of B isomorphic to Q(

√−q ). For a prime p, Bp is
a division algebra if and only if p = 2, and so a well known principle says that the
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prime 2 cannot split in Q(
√−q ). This is the easiest way to find the condition for

the representability of q as a sum of three squares. Moreover, the problem about
the number of representations can be reduced to that of counting the embeddings
of

√−q into a maximal order of B. We can similarly treat some other ternary forms
even over an algebraic number field by the same technique. This gives satisfactory
results in some special cases, but in general we cannot obtain explicit formulas as
good as what is given by (20). We mention here only [5] by Donkar, in which the
basic ideas are explained and several references before 1975 are given.

(R5) As we already said, it is a highly nontrivial problem to determine when
L[q, b] �= ∅. For instance, in the setting of Theorem 5 we have L[q, 2−1Z] �= ∅, but
L[q, Z] = ∅ can happen. Also, as Theorem 6 shows, the expected necessary and
sufficient condition is not simple. Still we can ask if there exists a reasonably simple
necessary or sufficient condition for L[q, 2−1Z] �= ∅.

(R6) At present, formulas (30) and (33) are the best we can say about the
problem for an arbitrary m < n, though we can add something more when m =
n − 1. If m = 1, we have (35), which explains the meaning of “the genus” of h.
We naturally ask: can we characterize the set V ∩ hDy−1 in a similar way when
m > 1?

(R7) As shown in Theorem 11 (ii) and explained after the proof, the weighted
average of (20) gives an asymptotic value of #L[q]. Is there any analogue of this
phenomenon for #L[q, b]? Namely, does the quantity⎧⎨⎩∑

j

(#Γj)−1

⎫⎬⎭
−1 ∑

j

#Lj [q, b]/#Γj

give the value #L[q, b] asymptotically? Here the notation is as in (36b), and j
runs over the indices for which Lj [q, b] �= ∅.
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