Small gaps between prime numbers: The work of Goldston-Pintz-Yildirim
Author:
K. Soundararajan
Journal:
Bull. Amer. Math. Soc. 44 (2007), 1-18
MSC (2000):
Primary 11N05
DOI:
https://doi.org/10.1090/S0273-0979-06-01142-6
Published electronically:
September 25, 2006
MathSciNet review:
2265008
Full-text PDF Free Access
References | Similar Articles | Additional Information
- E. B. Bogomolny and J. P. Keating, Random matrix theory and the Riemann zeros. I. Three- and four-point correlations, Nonlinearity 8 (1995), no. 6, 1115–1131. MR 1363402
- Enrico Bombieri, Le grand crible dans la théorie analytique des nombres, Astérisque 18 (1987), 103 (French, with English summary). MR 891718
- E. Bombieri and H. Davenport, Small differences between prime numbers, Proc. Roy. Soc. London Ser. A 293 (1966), 1–18. MR 199165, DOI https://doi.org/10.1098/rspa.1966.0155
- E. Bombieri, J. B. Friedlander, and H. Iwaniec, Primes in arithmetic progressions to large moduli, Acta Math. 156 (1986), no. 3-4, 203–251. MR 834613, DOI https://doi.org/10.1007/BF02399204
- Chen Jing-run, On the representation of a large even integer as the sum of a prime and the product of at most two primes, Kexue Tongbao 17 (1966), 385–386. MR 207668
- Harold Davenport, Multiplicative number theory, 3rd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000. Revised and with a preface by Hugh L. Montgomery. MR 1790423
- Noam D. Elkies and Curtis T. McMullen, Gaps in ${\sqrt n}\bmod 1$ and ergodic theory, Duke Math. J. 123 (2004), no. 1, 95–139. MR 2060024, DOI https://doi.org/10.1215/S0012-7094-04-12314-0 [8]8 P. Erdős, On the difference of consecutive primes, Quart. J. Math. Oxford 6 (1935), 124–128.
- P. Erdös, The difference of consecutive primes, Duke Math. J. 6 (1940), 438–441. MR 1759
- John Friedlander and Henryk Iwaniec, The polynomial $X^2+Y^4$ captures its primes, Ann. of Math. (2) 148 (1998), no. 3, 945–1040. MR 1670065, DOI https://doi.org/10.2307/121034
- P. X. Gallagher, On the distribution of primes in short intervals, Mathematika 23 (1976), no. 1, 4–9. MR 409385, DOI https://doi.org/10.1112/S0025579300016442 [12]12 D. Goldston, J. Pintz and C. Yıldırım, Primes in tuples, I, preprint, available at www.arxiv.org. [13]13 D. Goldston, S. Graham, J. Pintz and C. Yıldırım, Small gaps between primes and almost primes, preprint, available at www.arxiv.org. [14]14 D. Goldston, Y. Motohashi, J. Pintz and C. Yıldırım, Small gaps between primes exist, preprint, available at www.arxiv.org.
- Andrew Granville, Unexpected irregularities in the distribution of prime numbers, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 388–399. MR 1403939 [16]16 G.H. Hardy and J.E. Littlewood, Some problems of Parititio Numerorum (III): On the expression of a number as a sum of primes, Acta Math. 44 (1922), 1–70.
- D. R. Heath-Brown, Prime twins and Siegel zeros, Proc. London Math. Soc. (3) 47 (1983), no. 2, 193–224. MR 703977, DOI https://doi.org/10.1112/plms/s3-47.2.193
- D. R. Heath-Brown, Differences between consecutive primes, Jahresber. Deutsch. Math.-Verein. 90 (1988), no. 2, 71–89. MR 939754
- D. R. Heath-Brown, Primes represented by $x^3+2y^3$, Acta Math. 186 (2001), no. 1, 1–84. MR 1828372, DOI https://doi.org/10.1007/BF02392715
- M. N. Huxley, Small differences between consecutive primes. II, Mathematika 24 (1977), no. 2, 142–152. MR 466042, DOI https://doi.org/10.1112/S0025579300009037
- Nicholas M. Katz and Peter Sarnak, Zeroes of zeta functions and symmetry, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 1, 1–26. MR 1640151, DOI https://doi.org/10.1090/S0273-0979-99-00766-1
- Helmut Maier, Small differences between prime numbers, Michigan Math. J. 35 (1988), no. 3, 323–344. MR 978303, DOI https://doi.org/10.1307/mmj/1029003814
- H. L. Montgomery, The pair correlation of zeros of the zeta function, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 181–193. MR 0337821 [24]24 H. Montgomery and R.C. Vaughan, Multiplicative number theory I: Classical theory, Cambridge University Press, 2006. [25]25 R. Rankin, The difference between consecutive primes, J. London Math. Soc. 13, 242–244.
- E. Szemerédi, On sets of integers containing no $k$ elements in arithmetic progression, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 503–505. MR 0422191 [27]27 E. Westzynthius, Über die Verteilung der Zahlen, die zu der $n$ ersten Primzahlen teilerfremd sind, Comm. Phys. Math. Helsingfors 25 (1931), 1–37.
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 11N05
Retrieve articles in all journals with MSC (2000): 11N05
Additional Information
K. Soundararajan
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
Address at time of publication:
Department of Mathematics, Stanford University, 450 Serra Mall, Building 380, Stanford, California 94305-2125
MR Author ID:
319775
Email:
ksound@math.stanford.edu, ksound@umich.edu
Received by editor(s):
July 18, 2006
Published electronically:
September 25, 2006
Additional Notes:
This article is based on a lecture presented January 14, 2006, at the AMS Special Session on Current Events, Joint Mathematics Meetings, San Antonio, TX
The author is partially supported by the National Science Foundation
Article copyright:
© Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.