Small gaps between prime numbers: The work of Goldston-Pintz-Yildirim
HTML articles powered by AMS MathViewer
- by K. Soundararajan PDF
- Bull. Amer. Math. Soc. 44 (2007), 1-18 Request permission
References
- E. B. Bogomolny and J. P. Keating, Random matrix theory and the Riemann zeros. I. Three- and four-point correlations, Nonlinearity 8 (1995), no. 6, 1115–1131. MR 1363402, DOI 10.1088/0951-7715/8/6/013
- Enrico Bombieri, Le grand crible dans la théorie analytique des nombres, Astérisque 18 (1987), 103 (French, with English summary). MR 891718
- E. Bombieri and H. Davenport, Small differences between prime numbers, Proc. Roy. Soc. London Ser. A 293 (1966), 1–18. MR 199165, DOI 10.1098/rspa.1966.0155
- E. Bombieri, J. B. Friedlander, and H. Iwaniec, Primes in arithmetic progressions to large moduli, Acta Math. 156 (1986), no. 3-4, 203–251. MR 834613, DOI 10.1007/BF02399204
- Chen Jing-run, On the representation of a large even integer as the sum of a prime and the product of at most two primes, Kexue Tongbao 17 (1966), 385–386. MR 207668
- Harold Davenport, Multiplicative number theory, 3rd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000. Revised and with a preface by Hugh L. Montgomery. MR 1790423
- Noam D. Elkies and Curtis T. McMullen, Gaps in ${\sqrt n}\bmod 1$ and ergodic theory, Duke Math. J. 123 (2004), no. 1, 95–139. MR 2060024, DOI 10.1215/S0012-7094-04-12314-0 [8]8 P. Erdős, On the difference of consecutive primes, Quart. J. Math. Oxford 6 (1935), 124–128.
- P. Erdös, The difference of consecutive primes, Duke Math. J. 6 (1940), 438–441. MR 1759, DOI 10.1215/S0012-7094-40-00635-4
- John Friedlander and Henryk Iwaniec, The polynomial $X^2+Y^4$ captures its primes, Ann. of Math. (2) 148 (1998), no. 3, 945–1040. MR 1670065, DOI 10.2307/121034
- P. X. Gallagher, On the distribution of primes in short intervals, Mathematika 23 (1976), no. 1, 4–9. MR 409385, DOI 10.1112/S0025579300016442 [12]12 D. Goldston, J. Pintz and C. Yıldırım, Primes in tuples, I, preprint, available at www.arxiv.org. [13]13 D. Goldston, S. Graham, J. Pintz and C. Yıldırım, Small gaps between primes and almost primes, preprint, available at www.arxiv.org. [14]14 D. Goldston, Y. Motohashi, J. Pintz and C. Yıldırım, Small gaps between primes exist, preprint, available at www.arxiv.org.
- Andrew Granville, Unexpected irregularities in the distribution of prime numbers, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 388–399. MR 1403939 [16]16 G.H. Hardy and J.E. Littlewood, Some problems of Parititio Numerorum (III): On the expression of a number as a sum of primes, Acta Math. 44 (1922), 1–70.
- D. R. Heath-Brown, Prime twins and Siegel zeros, Proc. London Math. Soc. (3) 47 (1983), no. 2, 193–224. MR 703977, DOI 10.1112/plms/s3-47.2.193
- D. R. Heath-Brown, Differences between consecutive primes, Jahresber. Deutsch. Math.-Verein. 90 (1988), no. 2, 71–89. MR 939754
- D. R. Heath-Brown, Primes represented by $x^3+2y^3$, Acta Math. 186 (2001), no. 1, 1–84. MR 1828372, DOI 10.1007/BF02392715
- M. N. Huxley, Small differences between consecutive primes. II, Mathematika 24 (1977), no. 2, 142–152. MR 466042, DOI 10.1112/S0025579300009037
- Nicholas M. Katz and Peter Sarnak, Zeroes of zeta functions and symmetry, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 1, 1–26. MR 1640151, DOI 10.1090/S0273-0979-99-00766-1
- Helmut Maier, Small differences between prime numbers, Michigan Math. J. 35 (1988), no. 3, 323–344. MR 978303, DOI 10.1307/mmj/1029003814
- H. L. Montgomery, The pair correlation of zeros of the zeta function, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 181–193. MR 0337821 [24]24 H. Montgomery and R.C. Vaughan, Multiplicative number theory I: Classical theory, Cambridge University Press, 2006. [25]25 R. Rankin, The difference between consecutive primes, J. London Math. Soc. 13, 242–244.
- E. Szemerédi, On sets of integers containing no $k$ elements in arithmetic progression, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 503–505. MR 0422191 [27]27 E. Westzynthius, Über die Verteilung der Zahlen, die zu der $n$ ersten Primzahlen teilerfremd sind, Comm. Phys. Math. Helsingfors 25 (1931), 1–37.
Additional Information
- K. Soundararajan
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- Address at time of publication: Department of Mathematics, Stanford University, 450 Serra Mall, Building 380, Stanford, California 94305-2125
- MR Author ID: 319775
- Email: ksound@math.stanford.edu, ksound@umich.edu
- Received by editor(s): July 18, 2006
- Published electronically: September 25, 2006
- Additional Notes: This article is based on a lecture presented January 14, 2006, at the AMS Special Session on Current Events, Joint Mathematics Meetings, San Antonio, TX
The author is partially supported by the National Science Foundation - © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Bull. Amer. Math. Soc. 44 (2007), 1-18
- MSC (2000): Primary 11N05
- DOI: https://doi.org/10.1090/S0273-0979-06-01142-6
- MathSciNet review: 2265008