## Small gaps between prime numbers: The work of Goldston-Pintz-Yildirim

HTML articles powered by AMS MathViewer

- by K. Soundararajan PDF
- Bull. Amer. Math. Soc.
**44**(2007), 1-18 Request permission

## References

- E. B. Bogomolny and J. P. Keating,
*Random matrix theory and the Riemann zeros. I. Three- and four-point correlations*, Nonlinearity**8**(1995), no. 6, 1115–1131. MR**1363402**, DOI 10.1088/0951-7715/8/6/013 - Enrico Bombieri,
*Le grand crible dans la théorie analytique des nombres*, Astérisque**18**(1987), 103 (French, with English summary). MR**891718** - E. Bombieri and H. Davenport,
*Small differences between prime numbers*, Proc. Roy. Soc. London Ser. A**293**(1966), 1–18. MR**199165**, DOI 10.1098/rspa.1966.0155 - E. Bombieri, J. B. Friedlander, and H. Iwaniec,
*Primes in arithmetic progressions to large moduli*, Acta Math.**156**(1986), no. 3-4, 203–251. MR**834613**, DOI 10.1007/BF02399204 - Chen Jing-run,
*On the representation of a large even integer as the sum of a prime and the product of at most two primes*, Kexue Tongbao**17**(1966), 385–386. MR**207668** - Harold Davenport,
*Multiplicative number theory*, 3rd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000. Revised and with a preface by Hugh L. Montgomery. MR**1790423** - Noam D. Elkies and Curtis T. McMullen,
*Gaps in ${\sqrt n}\bmod 1$ and ergodic theory*, Duke Math. J.**123**(2004), no. 1, 95–139. MR**2060024**, DOI 10.1215/S0012-7094-04-12314-0
[8]8 P. Erdős, - P. Erdös,
*The difference of consecutive primes*, Duke Math. J.**6**(1940), 438–441. MR**1759**, DOI 10.1215/S0012-7094-40-00635-4 - John Friedlander and Henryk Iwaniec,
*The polynomial $X^2+Y^4$ captures its primes*, Ann. of Math. (2)**148**(1998), no. 3, 945–1040. MR**1670065**, DOI 10.2307/121034 - P. X. Gallagher,
*On the distribution of primes in short intervals*, Mathematika**23**(1976), no. 1, 4–9. MR**409385**, DOI 10.1112/S0025579300016442
[12]12 D. Goldston, J. Pintz and C. Yıldırım, - Andrew Granville,
*Unexpected irregularities in the distribution of prime numbers*, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 388–399. MR**1403939**
[16]16 G.H. Hardy and J.E. Littlewood, - D. R. Heath-Brown,
*Prime twins and Siegel zeros*, Proc. London Math. Soc. (3)**47**(1983), no. 2, 193–224. MR**703977**, DOI 10.1112/plms/s3-47.2.193 - D. R. Heath-Brown,
*Differences between consecutive primes*, Jahresber. Deutsch. Math.-Verein.**90**(1988), no. 2, 71–89. MR**939754** - D. R. Heath-Brown,
*Primes represented by $x^3+2y^3$*, Acta Math.**186**(2001), no. 1, 1–84. MR**1828372**, DOI 10.1007/BF02392715 - M. N. Huxley,
*Small differences between consecutive primes. II*, Mathematika**24**(1977), no. 2, 142–152. MR**466042**, DOI 10.1112/S0025579300009037 - Nicholas M. Katz and Peter Sarnak,
*Zeroes of zeta functions and symmetry*, Bull. Amer. Math. Soc. (N.S.)**36**(1999), no. 1, 1–26. MR**1640151**, DOI 10.1090/S0273-0979-99-00766-1 - Helmut Maier,
*Small differences between prime numbers*, Michigan Math. J.**35**(1988), no. 3, 323–344. MR**978303**, DOI 10.1307/mmj/1029003814 - H. L. Montgomery,
*The pair correlation of zeros of the zeta function*, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 181–193. MR**0337821**
[24]24 H. Montgomery and R.C. Vaughan, - E. Szemerédi,
*On sets of integers containing no $k$ elements in arithmetic progression*, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 503–505. MR**0422191**
[27]27 E. Westzynthius,

*On the difference of consecutive primes*, Quart. J. Math. Oxford

**6**(1935), 124–128.

*Primes in tuples, I*, preprint, available at www.arxiv.org. [13]13 D. Goldston, S. Graham, J. Pintz and C. Yıldırım,

*Small gaps between primes and almost primes*, preprint, available at www.arxiv.org. [14]14 D. Goldston, Y. Motohashi, J. Pintz and C. Yıldırım,

*Small gaps between primes exist*, preprint, available at www.arxiv.org.

*Some problems of Parititio Numerorum (III): On the expression of a number as a sum of primes*, Acta Math.

**44**(1922), 1–70.

*Multiplicative number theory I: Classical theory*, Cambridge University Press, 2006. [25]25 R. Rankin,

*The difference between consecutive primes*, J. London Math. Soc.

**13**, 242–244.

*Über die Verteilung der Zahlen, die zu der $n$ ersten Primzahlen teilerfremd sind*, Comm. Phys. Math. Helsingfors

**25**(1931), 1–37.

## Additional Information

**K. Soundararajan**- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- Address at time of publication: Department of Mathematics, Stanford University, 450 Serra Mall, Building 380, Stanford, California 94305-2125
- MR Author ID: 319775
- Email: ksound@math.stanford.edu, ksound@umich.edu
- Received by editor(s): July 18, 2006
- Published electronically: September 25, 2006
- Additional Notes: This article is based on a lecture presented January 14, 2006, at the AMS Special Session on Current Events, Joint Mathematics Meetings, San Antonio, TX

The author is partially supported by the National Science Foundation - © Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Bull. Amer. Math. Soc.
**44**(2007), 1-18 - MSC (2000): Primary 11N05
- DOI: https://doi.org/10.1090/S0273-0979-06-01142-6
- MathSciNet review: 2265008