
BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 44, Number 2, April 2007, Pages 323–330
S 0273-0979(07)01136-6
Article electronically published on January 5, 2007

Non-linear elliptic equations in conformal geometry, by S.-Y. Alice Chang, Zürich
Lectures in Advanced Mathematics, European Mathematical Society, Zürich,
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A conformal transformation is a diffeomorphism which preserves angles; the
differential at each point is the composition of a rotation and a dilation. In its
original sense, conformal geometry is the study of those geometric properties pre-
served under transformations of this type. This subject is deeply intertwined with
complex analysis for the simple reason that any holomorphic function f(z) of one
complex variable is conformal (away from points where f ′(z) = 0), and conversely,
any conformal transformation from one neighbourhood of the plane to another
is either holomorphic or antiholomorphic. This provides a rich supply of local
conformal transformations in two dimensions. More globally, the (orientation pre-
serving) conformal diffeomorphisms of the Riemann sphere S2 are its holomorphic
automorphisms, and these in turn constitute the non-compact group of linear frac-
tional transformations. By contrast, the group of conformal diffeomorphisms of any
other compact Riemann surface is always compact (and finite when the genus is
greater than 1). Implicit here is the notion that a Riemann surface is a smooth
two-dimensional surface together with a conformal structure, i.e. a fixed way to
measure angles on each tangent space. There is a nice finite dimensional structure
on the set of all inequivalent conformal structures on a fixed compact surface; this
is the starting point of Teichmüller theory. All of this is in accord with the fact
that the conformal property is an elliptic equation in two dimensions, so there are
many solutions locally, but global existence is constrained and solutions lie in finite
dimensional families.

In higher dimensions, the equation that a map be conformal is formally over-
determined, so one expects very few such transformations, if any. Generalizations
of the linear fractional transformations always do exist: for any n, the conformal
group O(n + 1, 1) – also called the Möbius group – consists of all mappings on R

n

which are compositions of translations, rotations, dilations and inversions about
spheres. Any Möbius transformation extends naturally both to a global conformal
diffeomorphism of Sn, and also to its interior, the ball, as an isometry for the
hyperbolic Poincaré metric on Bn+1. This last statement is the basis for the far-
reaching correspondence between hyperbolic manifolds and conformal group actions
on the sphere, which has many ramifications in geometry, dynamics and number
theory. However, these are the only conformal mappings of the sphere; a theorem
due to Liouville states that any locally defined conformal diffeomorphism in R

n

with n > 2 is the restriction of one of these Möbius transformations. (In particular,
except for very special cases, holomorphic maps of several complex variables are
never conformal.)

Ideas from conformal geometry pervade 2 dimensional geometry and topology,
but as just indicated, in order to develop a satisfactory theory with a broad scope
in higher dimensions, it is a mistake to place the emphasis on mappings as the
central objects of interest. Rather, one should change focus from mappings to
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conformal structures and the notion of conformal equivalence of metrics. Two
Riemannian metrics g and g′ on an n-dimensional manifold M , n ≥ 2, are called
conformally equivalent if g′ = e2φg for some (smooth) function φ. The conformal
class [g] consists of all metrics related in this way to a given metric g. There is a
significant difference between the 2- and the higher dimensional settings since the
space of inequivalent conformal structures on a closed n-manifold, n ≥ 3, is always
infinite dimensional. Conformal geometry, as it is now understood in geometric
analysis, involves the study of conformal classes and various objects associated to
them, e.g. conformally covariant differential operators and conformal invariants
associated to them, conformal anomaly formulæfor global spectral invariants, and
canonical metrics within a conformal class, to name just a few. I cannot do justice
here to even just these topics, let alone other parts of the subject which touch on
Lie and representation theory, as well as other parts of PDE and geometry. What
follows is a brief overview of an intriguing web of ideas which has been the crux of
a large body of research in the last decade and which is the subject of the book
under review.

I begin with the Laplacian on a surface M , its functional determinant, and the
relationship of these with Gauss curvature. To any Riemannian metric g on an n-
dimensional manifold, one can naturally associate a second order elliptic differential
operator acting on functions; this is the Laplacian, usually denoted ∆g. In two
dimensions, this operator is conformally covariant in the sense that if g′ = e2φg, then
∆g′ = e−2φ∆g. Very closely related is the formula giving the relationship between
the Gauss curvatures, Kg and Kg′ , of these two conformally related metrics:

∆gφ + Kg′e2φ = Kg.

The area elements of these two metrics are related by dAg′ = e2φdAg and by the
divergence theorem,

∫
M

∆gφ dAg = 0, so we deduce from this formula that∫
M

Kg′ dAg′ =
∫

M

Kg dAg;

in other words, this total curvature integral is independent of the choice of metric
in a conformal class. Of course, more is true: the Gauss-Bonnet theorem states
that the integral of the Gauss curvature over a closed surface is equal to 2π times
the Euler characteristic χ(M) and hence is also independent of the conformal class.

One old problem, studied by Nirenberg, Kazdan-Warner and many others, asks
whether given an arbitrary smooth function on a closed surface, it is possible to find
a metric in a fixed conformal class with Gauss curvature equal to this prescribed
function. The special case where this function is constant is equivalent to the
uniformization theorem. However, if the function is non-constant, this problem is
in some sense unstable and is known to be rather difficult to solve, though there
are many partial results.

Next, let A be a self-adjoint elliptic operator of order d on a compact n-dimen-
sional manifold. Its spectrum consists of the sequence of eigenvalues {λj}, so for
each λj there exists a function φj with Aφj = λjφj . We assume that every λj ≥ 0
(so we shall take A to be −∆g momentarily). To understand this eigenvalue se-
quence it is convenient to wrap these numbers up into a single function depending on
an auxiliary variable. A good choice is the zeta function of A, ζA(s) :=

∑
λj>0 λ−s

j .
By the Weyl asymptotic theorem one knows that λj ∼ αjd/n for some α > 0 which
is independent of j. This implies in turn that ζA(s) is holomorphic in the right
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half-plane Re(s) > n/d. Using the short time asymptotics of the heat equation
associated to A, which is closely connected to the local geometry, it can be shown
that ζA(s) continues meromorphically to the entire complex plane and is regular
at s = 0. The definition proposed by Ray and Singer in the early 1970’s is that
− log detA = ζ ′(0), which is equivalent to the usual answer when A is a positive
symmetric matrix of finite rank (try it!). This determinant is a spectral invariant,
i.e. a numerical invariant of the operator A which depends on the entire spectrum
(and nothing else). In particular, g �→ F (g) := − log det(−∆g) is a functional on
the space of all metrics.

A remarkable fact, discovered by the physicist Polyakov, is that despite the global
nature of the spectrum, if A = −∆g on a compact surface, then the differential of
this functional F in conformal directions (i.e. only allowing variations of the metric
within a conformal class) is given by a local formula: if φε is any family of functions
depending smoothly on a parameter ε with φ0 = 1, φ̇0 = w, and if gε = e2φ(ε)g,
then

DF∗|g (w) =
d

dε

∣∣∣∣
ε=0

F (gε) =
1

12π

∫
M

(|∇w|2 + 2Kgw) dAg.

This expression is called ‘local’ because it is an integral of quantities which are all
given in terms of derivatives of w and the local geometry of g.

It is no surprise that the critical points of F within a conformal class might
be of interest. To eliminate the trivial scaling dependence, we restrict ourselves
to metrics with fixed area, i.e.

∫
M

e2φε dAg = const.; differentiating this contraint
with respect to ε shows that

∫
M

w dAg = 0. It is then a simple exercise in the
calculus of variations to see that g is a critical metric if and only if Kg is constant.
This is a new characterization of the constant curvature metric(s) in a conformal
class as critical points of the ‘log det’ functional. In an influential series of papers
in the late 1980’s, Osgood, Phillips and Sarnak made these observations and went
on to prove the compactness of the set of metrics g on a closed surface M , not
necessarily all in a fixed conformal class, for which the spectrum of ∆g is a fixed
sequence {λj}. (The crucial extra ingredient is that F is a proper function on the
space of all constant curvature metrics of fixed area.)

The significant features of this two dimensional story are the conformal covari-
ance of the Laplacian in two dimensions, its conformal transformation rule and the
relationship between the Gauss curvatures of two conformally related metrics; all
of these in turn are related to the conformal variation of det(−∆g).

Determinants of Laplacians in higher dimensions are less easy to study, and in
particular, on a compact manifold (M, g) with dim M > 2 there is no local formula
for the derivative, even just in conformal directions, of F (g) = − log det(−∆g).
Okikiolu has some nice results concerning the variations of this functional in all
(not just conformal) directions near certain natural metrics (such as round spheres)
in arbitrary dimension. However, the most promising avenue of research requires
conformal covariance of the operator. This sets the program: find geometrically
natural, elliptic, conformally covariant operators in any dimension; understand ‘cur-
vatures’ associated to these operators and any other curvature quantities which
transform simply under conformal changes, as well as the total integrals of these
curvatures; and study the determinants of these putative conformally covariant
operators and their Polyakov formulæ.
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One conformally covariant operator has been known for a long time. This is the
conformal Laplacian,

Lg = ∆g − n − 2
4(n − 1)

Rg.

Here Rg is the scalar curvature function on M (whose value at a point p is the
average of all the sectional curvatures amongst all 2-planes in the tangent space at
that point). If g′ = e2φg as usual, then for any function w,

Lg′w = e−
n+2

2 φLg(e
n−2

2 φw).

Another form of this covariance is obtained by setting u4/(n−2) = e2φ, which gives
Lg′w = u−(n+2)/(n−2)Lg(u w). In particular, applying both sides to the constant
function w = 1 yields

∆gu − n − 2
4(n − 1)

Rgu +
n − 2

4(n − 1)
Rg′u

n+2
n−2 = 0.

This is the famous Yamabe equation, which relates the scalar curvature functions of
any two conformally related metrics. Note that it does not make sense to set n = 2
here, but there is still a way to think of the transformation rule for Gauss curva-
ture in two dimensions as a limiting case “as n → 2” of this formula. There is a
long history concerning the existence of solutions of this semilinear elliptic equation
when Rg′ is a prescribed function and in particular when Rg′ is constant. As in the
two dimensional case, this has a particularly delicate type of non-linearity which is
borderline with respect to ‘standard techniques’, and the eventual solution of this
problem (for constant Rg′) by Schoen, following earlier work of Yamabe, Trudinger
and Aubin, is well documented in the marvelous detailed survey [1]. The ideas sur-
rounding this, as well as the case where Rg′ is not constant, have provided major
stimulus in geometric analysis and PDE since the 1960’s, and this earlier story was
the true beginning of sophisticated analytic techniques in conformal geometry. Of
particular note is the work of Schoen and Yau concerning the structure of confor-
mally flat manifolds with positive scalar curvature. Here, conformal flatness is the
condition that the metric be locally conformally equivalent to the Euclidean one.
There is a lot of interesting, and still not completely understood, geometry behind
this condition, and it has also been an important preliminary hypothesis in many of
the analytic investigations in this area. The monograph [2] provides a good treat-
ment of many topics relevant to this. Something rather surprising, which emerged
first in the work of Schoen and more recently in that of C.S. Lin, Hebey and his
students, etc., is that this specific geometric equation has many special properties
not shared by even very small ‘non-geometric’ perturbations of the equation.

Prompted by questions in quantum field theory, in the early 1980’s the young
mathematical physicist Steve Paneitz discovered a fourth order conformally covari-
ant operator in any dimension n ≥ 4. When n = 4, this ‘Paneitz operator’ is

Pg = ∆2
g + δ(

2
3
Rg g − 2Ric(g))d.

(Here d maps functions to 1-forms, δ is its adjoint and maps 1-forms to functions,
and (2/3)Rg g − 2Ric(g) acts as a linear transformation on 1-forms.) There are
corresponding, but somewhat more complicated, expressions in higher dimensions.
It satisfies, with g′ = e2φg and for any w,

Pg′w = e−
n+4

2 φPg(e
n−4

2 φw).
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In particular, when n = 4, Pg′ = e−4φPg. Moreover, there is a new curvature
associated with Pg. This has been christened the ‘Q-curvature’; when n = 4,

Qg =
1
12

(
R2

g − 3|Ric(g)|2g − ∆gRg

)
and Pgφ + 2Qg = 2Qg′e4φ,

and one can still deduce that
∫

M
Qg dVg is independent of the choice of metric in a

conformal class. It is also interesting to note that this is a summand in the Chern-
Gauss-Bonnet formula in this dimension. When n > 4, Qg is (up to a constant)
just the term of order zero in the corresponding Paneitz operator. Notice that all
of this is very much as for the Laplacian and Gauss curvature in two dimensions
(although this Q curvature integral is just a conformal invariant and no longer
independent of conformal class); when n > 4, these objects are analogous to the
conformal Laplacian and scalar curvature. Some part of this was discovered, and
certainly all of it was formulated, in a particularly useful way at roughly the same
time by Tom Branson.

Paneitz died quite tragically not long after this discovery, but this operator
pointed the way toward the general phenomenon. It is now known, through the
work of Graham, Jenne, Mason and Sparling, that for n odd and every k ∈ N,
there exists a conformally covariant operator P k

n of order 2k, naturally associated
to any metric g, which is a lower order perturbation of ∆k

g ; when n is even, this
operator exists only when 1 ≤ k ≤ n/2. A recent result by Graham and Zworski re-
constructs these and obtains some of their properties through an elegant connection
with scattering theory on asymptotically hyperbolic manifolds. Associated to each
P k

n is a Q curvature, Qk
n, which is again the term of order 0 in P k

n unless n is even
and k = n/2. It is a higher order analogue of the Gauss or scalar curvature and
satisfies a nice transformation rule involving P k

n .
This is an appropriate place to mention a large program on parabolic invariant

theory initiated by Charles Fefferman and its relationship to some of the results
above. There is a famous result by Weyl concerning the classification of scalar in-
variants of Riemannian metrics; these are quantities defined in terms of the metric
and its derivatives in any coordinate system, but which are independent of choice
of coordinates. This is related to representations of the orthogonal group. Weyl
showed that these invariants can all be obtained as contractions of products of
the Riemann curvature tensor and its covariant derivatives. Fefferman’s goal is to
understand scalar invariants of a conformal class (this is ‘the real case’) or a CR
structure (the complex case) or the geometric structures associated to other para-
bolic groups. Fefferman and Graham laid out a compelling structure and plan of
action for accomplishing this, and in recent years this has borne fruit, particularly
in the real and complex cases due to the concerted effort of these two and their
collaborators. In particular, the original proof of existence of the conformally co-
variant operators P k

n was motivated by and obtained as part of this program, while
the newer perspective on these operators stems from their basic idea of associat-
ing to a conformal structure on a manifold M a canonical complete asymptotically
hyperbolic (Riemannian) Einstein metric on a manifold X with ∂X = M , so that
Riemannian invariants for this filling metric correspond to conformal invariants
on the boundary. A new approach to all of these ideas, the tractor calculus, has
recently been developed by Rod Gover.
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To return to the main thread, Branson and Ørsted proved that there is a
Polyakov-type formula for any conformally covariant (semibounded) elliptic op-
erator. In 4 dimensions, for operators of order 2, the integrand in this formula is
always a linear combination of three basic components: the norm squared of the
Weyl curvature tensor, |Wg|2g, the Laplacian of the scalar curvature, ∆gRg, and the
Q curvature! Unlike the two dimensional case, however, the existence of critical
points for this functional, let alone a characterization of them, is very difficult.
This existence was accomplished by Chang and Yang in 4 dimensions, assuming a
certain condition on the signs of the constants which arise in the linear combination
above (satisfied for the conformal Laplacian) as well as a bound on the integral of
the Q curvature (which was later shown by Gursky to be automatically satisfied if
one is working in a conformal class with positive Yamabe invariant). However, the
existence theory for such extremal metrics remains mostly open, and the geometric
nature of these extremal metrics is not clear.

These considerations provide some motivation for the problem of finding met-
rics within a conformal class with constant Q curvature. Before describing this,
I need to introduce one (final!) family of curvature quantities with good confor-
mal transformation properties. These are based on the Schouten tensor Ag =
(n− 2)−1(Ric(g)− (Rg/2(n− 1))g), which satisfies the transformation rule that for
g′ = e2φg,

Ag′ = −∇∇φ + dφ ⊗ dφ − 1
2
|∇φ|2g + Ag.

The scalar invariants which can be derived from this are the kth symmetric polyno-
mials of its eigenvalues, denoted σk(Ag), which I will call simply the σk curvatures.
This general class of functionals was discovered by Viaclovsky. There are several
connections with the preceding discussion. First, observe that σ1(Ag) is a multiple
of the scalar curvature. Next, when n is even, σn/2(Ag) is closely related to Q

n/2
n ;∫

M
σn/2(Ag) dVg is an invariant of the conformal class both when n = 4 and also

in higher dimensions under certain assumptions on the conformal class. This leads
to the problem of finding metrics in a given conformal class for which σk(Ag) is
constant (or equal to some prescribed function). The case k = 1 is the Yamabe
problem, which was discussed above. When k > 1, however, this problem becomes a
fully non-linear equation. As is the nature of such equations, it is elliptic (and hence
admits a good existence and regularity theory) only under special circumstances;
in other words, if one starts with a background metric g, then this σk function is
elliptic for φ near 0 only if g satisfies some potentially restrictive conditions. In fact,
when k ≥ n/2, it follows by a purely algebraic calculation that if the σk function
is elliptic at some metric g′, then the Ricci tensor of g′ is positive. This is quite
stringent, and for k in this range, the existence of metrics with σk > 0 gives strong
topological restrictions. At any rate, this is quite different from the situation when
k = 1, where the problem can always be treated by elliptic methods.

In the last few years, much progress has been made, and there is now a very
substantial literature on the σk equations and the existence of metrics in a conformal
class for which the σk curvature is constant. Interestingly, this equation is not
always the Euler-Lagrange equation for an ‘energy’, and this problem may not be
approached by methods in the calculus of variations, except in certain special cases.
For example, the equation does have a variational structure when the conformal
class is locally conformally flat; using this and other ideas, this case has been
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treated quite thoroughly by A. Li and Y. Li and by Guan and G. Wang. In the
non-locally conformally flat case, Gursky and Viaclovsky proved existence when
k > n/2 if one has a good initial metric (for which the problem is elliptic), and
there are more recent results by Trudinger and X. Wang. The 4-dimensional case
was handled by Chang-Gursky-Yang. When k = n/2, n > 4, some existence results
were obtained by Viaclovsky and others. The cases 1 < k < n/2 have proved
much more difficult; only recently have some general results been obtained by Ge
and Wang when k = 2 and in somewhat greater generality by Shen-Trudinger-
X. Wang. All of this has provided an excellent testing ground for older techniques
as well as for the development of new ones in the field of fully non-linear elliptic
equations.

This now covers many (but not all) of the bases in this corner of conformal
geometry. We finally come to the book under review. The author, Alice Chang,
has been a key player and the leader in this recent development; the credit for
uncovering these many relationships between Polyakov formulæ for determinants of
conformally covariant operators and this family of new curvature quantities belongs
to her and her collaborators.

As the author states in her introduction, this book should be regarded as a
snapshot at a particular moment in the history of this subject. Its focus is on this
circle of ideas in dimensions 2 and 4. The early chapters contain a careful account of
these problems and some related ones on surfaces. In particular, she discusses some
existence results for the prescribed Gauss curvature equation on surfaces and the
various borderline Sobolev inequalities, including the Moser-Trudinger and Onofri
inequalities, needed to carry out the rigorous proof of the existence of minimizers
for the determinant functional on the 2-sphere. The original Polyakov formula is
also proved. The middle set of chapters gives an overview (omitting many proofs)
concerning the Paneitz operator and other conformally covariant operators and
the Branson-Ørsted Polyakov formulæ. The final chapters are again quite detailed
and present her proof, with Gursky and Yang, for the existence of metrics on a
4-manifold with constant σ2. This can be recommended as a good ‘case study’ of
an interesting fully elliptic problem.

There is a wide range of important analytic and geometric techniques used here,
and though the learning curve would be steep, this book should be accessible to
students after a first course in graduate PDE and some experience with Riemannian
geometry (or at least its formalism), though a preliminary close reading of Lee and
Parker’s article on the Yamabe problem would provide context and also mitigate
some of the technical demands of this book. The arguments for the two dimen-
sional case and for σ2 in four dimensions are explained carefully, and this provides
a nice example of a beautiful interplay between geometric and analytic ideas in
some accessible settings. There is no discussion of the subtleties in the prescribed
Gauss curvature equation on surfaces or of the corresponding problem in higher
dimensions, but I realize that the author’s space and time were limited. In any
case, I would certainly enthusiastically recommend this book to students or anyone
wishing to learn some of these ideas.

This subject has continued to expand in the intervening years since Chang gave
the Nachdiplom lectures at the ETH in Zürich, upon which these notes are based,
and the understanding of some of the problems discussed here has reached a much
more refined state. I must also record the very sad fact that Tom Branson, another
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of the principal architects of modern conformal geometry, passed away suddenly in
the spring of 2006.

I conclude with a few further comments. A guiding problem in Riemannian
geometry is to find on a given manifold a ‘best metric’, the existence of which should
hopefully provide new ways to understand the topology of the manifold. Einstein
metrics are the best candidates for such canonical metrics; these are characterized
by the equation that their Ricci curvature is a multiple of the metric, Ric(g) = λg
for some constant λ. The direct search for Einstein metrics in higher dimensions
and on general manifolds has proved far too difficult, and there are no tractable
analytic approaches for proceeding (except on Kähler manifolds or otherwise in
the presence of extra structure). On the other hand, as we have seen, the more
restricted problem of finding good metrics within a conformal class has proved to be
within the bounds of current techniques, although sometimes just barely, and these
geometric problems have engendered a huge amount of progress and new analytic
insight. Except in two dimensions, there is no single completely natural choice
of metric in a conformal class, but instead, the solution of the Yamabe problem,
and now much of this work described here, provides a collection of good conformal
representatives. One of the real challenges in this subject is to discover how to use
these and so repay the debt of analysis to geometry.
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