Nonsmooth calculus
Author:
Juha Heinonen
Journal:
Bull. Amer. Math. Soc. 44 (2007), 163-232
MSC (2000):
Primary 28A75, 49J52, 53C23, 51-02
DOI:
https://doi.org/10.1090/S0273-0979-07-01140-8
Published electronically:
January 24, 2007
MathSciNet review:
2291675
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We survey recent advances in analysis and geometry, where first order differential analysis has been extended beyond its classical smooth settings. Such studies have applications to geometric rigidity questions, but are also of intrinsic interest. The transition from smooth spaces to singular spaces where calculus is possible parallels the classical development from smooth functions to functions with weak or generalized derivatives. Moreover, there is a new way of looking at the classical geometric theory of Sobolev functions that is useful in more general contexts.
- Geometry. IV, Encyclopaedia of Mathematical Sciences, vol. 70, Springer-Verlag, Berlin, 1993. Nonregular Riemannian geometry; A translation of Geometry, 4 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989 [ MR1099201 (91k:53003)]; Translation by E. Primrose. MR 1263963
- Rob Kirby (ed.), Problems in low-dimensional topology, Geometric topology (Athens, GA, 1993) AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc., Providence, RI, 1997, pp. 35–473. MR 1470751
- David R. Adams and Lars Inge Hedberg, Function spaces and potential theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314, Springer-Verlag, Berlin, 1996. MR 1411441
- Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR 0450957
- Lars Ahlfors and Arne Beurling, Conformal invariants and function-theoretic null-sets, Acta Math. 83 (1950), 101–129. MR 36841, DOI https://doi.org/10.1007/BF02392634
- A. D. Aleksandrov and V. A. Zalgaller, Intrinsic geometry of surfaces, Translations of Mathematical Monographs, Vol. 15, American Mathematical Society, Providence, R.I., 1967. Translated from the Russian by J. M. Danskin. MR 0216434
- Luigi Ambrosio, Metric space valued functions of bounded variation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), no. 3, 439–478. MR 1079985
- Luigi Ambrosio, Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces, Adv. Math. 159 (2001), no. 1, 51–67. MR 1823840, DOI https://doi.org/10.1006/aima.2000.1963
- Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005. MR 2129498
- Luigi Ambrosio and Bernd Kirchheim, Currents in metric spaces, Acta Math. 185 (2000), no. 1, 1–80. MR 1794185, DOI https://doi.org/10.1007/BF02392711
- L. Ambrosio, M. Miranda Jr., and D. Pallara, Special functions of bounded variation in doubling metric measure spaces, Calculus of variations: topics from the mathematical heritage of E. De Giorgi, Quad. Mat., vol. 14, Dept. Math., Seconda Univ. Napoli, Caserta, 2004, pp. 1–45. MR 2118414
- Luigi Ambrosio and Francesco Serra Cassano (eds.), Lectures notes on analysis in metric spaces, Appunti dei Corsi Tenuti da Docenti della Scuola. [Notes of Courses Given by Teachers at the School], Scuola Normale Superiore, Pisa, 2000. Papers from the International Summer School held in Trento, May 1999. MR 2023120
- Luigi Ambrosio and Paolo Tilli, Topics on analysis in metric spaces, Oxford Lecture Series in Mathematics and its Applications, vol. 25, Oxford University Press, Oxford, 2004. MR 2039660
- Patrice Assouad, Plongements lipschitziens dans ${\bf R}^{n}$, Bull. Soc. Math. France 111 (1983), no. 4, 429–448 (French, with English summary). MR 763553
- Kari Astala, Mario Bonk, and Juha Heinonen, Quasiconformal mappings with Sobolev boundary values, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1 (2002), no. 3, 687–731. MR 1990676
- Pascal Auscher, Thierry Coulhon, and Alexander Grigor’yan (eds.), Heat kernels and analysis on manifolds, graphs, and metric spaces, Contemporary Mathematics, vol. 338, American Mathematical Society, Providence, RI, 2003. Lecture notes from a Quarter Program on Heat Kernels, Random Walks, and Analysis on Manifolds and Graphs held in Paris, April 16–July 13, 2002. MR 2041910
- Zoltán M. Balogh and Pekka Koskela, Quasiconformality, quasisymmetry, and removability in Loewner spaces, Duke Math. J. 101 (2000), no. 3, 554–577. With an appendix by Jussi Väisälä. MR 1740689, DOI https://doi.org/10.1215/S0012-7094-00-10138-X
- Zoltán M. Balogh and Stephen M. Buckley, Geometric characterizations of Gromov hyperbolicity, Invent. Math. 153 (2003), no. 2, 261–301. MR 1992014, DOI https://doi.org/10.1007/s00222-003-0287-6 bkr:acl Z. M. Balogh, P. Koskela, and S. Rogovin, Absolute continuity of quasiconformal mappings on curves, Geometric and Functional Analysis (to appear).
- Zoltán M. Balogh, Kevin Rogovin, and Thomas Zürcher, The Stepanov differentiability theorem in metric measure spaces, J. Geom. Anal. 14 (2004), no. 3, 405–422. MR 2077159, DOI https://doi.org/10.1007/BF02922098
- D. Bao, S.-S. Chern, and Z. Shen, An introduction to Riemann-Finsler geometry, Graduate Texts in Mathematics, vol. 200, Springer-Verlag, New York, 2000. MR 1747675
- André Bellaïche, The tangent space in sub-Riemannian geometry, Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 1–78. MR 1421822, DOI https://doi.org/10.1007/978-3-0348-9210-0_1
- Arne Beurling, The collected works of Arne Beurling. Vol. 1, Contemporary Mathematicians, Birkhäuser Boston, Inc., Boston, MA, 1989. Complex analysis; Edited by L. Carleson, P. Malliavin, J. Neuberger and J. Wermer. MR 1057613
- Anders Björn, Jana Björn, and Nageswari Shanmugalingam, The Dirichlet problem for $p$-harmonic functions on metric spaces, J. Reine Angew. Math. 556 (2003), 173–203. MR 1971145, DOI https://doi.org/10.1515/crll.2003.020
- Anders Björn, Jana Björn, and Nageswari Shanmugalingam, The Perron method for $p$-harmonic functions in metric spaces, J. Differential Equations 195 (2003), no. 2, 398–429. MR 2016818, DOI https://doi.org/10.1016/S0022-0396%2803%2900188-8 bonk:icm M. Bonk, Quasiconformal geometry of fractals, ICM Proceedings, Madrid (2006).
- Mario Bonk, Juha Heinonen, and Pekka Koskela, Uniformizing Gromov hyperbolic spaces, Astérisque 270 (2001), viii+99. MR 1829896
- Mario Bonk and Bruce Kleiner, Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math. 150 (2002), no. 1, 127–183. MR 1930885, DOI https://doi.org/10.1007/s00222-002-0233-z
- Mario Bonk and Bruce Kleiner, Rigidity for quasi-Möbius group actions, J. Differential Geom. 61 (2002), no. 1, 81–106. MR 1949785
- Mario Bonk and Bruce Kleiner, Rigidity for quasi-Fuchsian actions on negatively curved spaces, Int. Math. Res. Not. 61 (2004), 3309–3316. MR 2096259, DOI https://doi.org/10.1155/S1073792804141998
- Mario Bonk and Bruce Kleiner, Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol. 9 (2005), 219–246. MR 2116315, DOI https://doi.org/10.2140/gt.2005.9.219
- Mario Bonk and Urs Lang, Bi-Lipschitz parameterization of surfaces, Math. Ann. 327 (2003), no. 1, 135–169. MR 2006006, DOI https://doi.org/10.1007/s00208-003-0443-8
- Nicolas Bourbaki, Elements of the history of mathematics, Springer-Verlag, Berlin, 1994. Translated from the 1984 French original by John Meldrum. MR 1290116
- M. Bourdon, Immeubles hyperboliques, dimension conforme et rigidité de Mostow, Geom. Funct. Anal. 7 (1997), no. 2, 245–268 (French, with English and French summaries). MR 1445387, DOI https://doi.org/10.1007/PL00001619
- Marc Bourdon and Hervé Pajot, Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings, Proc. Amer. Math. Soc. 127 (1999), no. 8, 2315–2324. MR 1610912, DOI https://doi.org/10.1090/S0002-9939-99-04901-1
- Marc Bourdon and Hervé Pajot, Cohomologie $l_p$ et espaces de Besov, J. Reine Angew. Math. 558 (2003), 85–108 (French, with English summary). MR 1979183, DOI https://doi.org/10.1515/crll.2003.043
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486 bbt:analysis A. Bruckner, J. Bruckner, and B. Thomson, Real analysis, Prentice-Hall, NJ, 1997.
- J. Bryant, S. Ferry, W. Mio, and S. Weinberger, Topology of homology manifolds, Ann. of Math. (2) 143 (1996), no. 3, 435–467. MR 1394965, DOI https://doi.org/10.2307/2118532
- Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001. MR 1835418
- Peter Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 2, 213–230. MR 683635
- J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), no. 3, 428–517. MR 1708448, DOI https://doi.org/10.1007/s000390050094
- H. O. Hartley, The probability integral of the range in samples of $n$ observations from a normal population. II. Numerical evaluation of the probability integral, Biometrika 32 (1942), 309–310. MR 6642, DOI https://doi.org/10.1093/biomet/32.3-4.309
- J. Cheeger, Integral bounds on curvature elliptic estimates and rectifiability of singular sets, Geom. Funct. Anal. 13 (2003), no. 1, 20–72. MR 1978491, DOI https://doi.org/10.1007/s000390300001
- Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom. 46 (1997), no. 3, 406–480. MR 1484888
- Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded below. II, J. Differential Geom. 54 (2000), no. 1, 13–35. MR 1815410
- Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded below. III, J. Differential Geom. 54 (2000), no. 1, 37–74. MR 1815411
- J. Cheeger, T. H. Colding, and G. Tian, On the singularities of spaces with bounded Ricci curvature, Geom. Funct. Anal. 12 (2002), no. 5, 873–914. MR 1937830, DOI https://doi.org/10.1007/PL00012649
- Jeff Cheeger and Detlef Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry 6 (1971/72), 119–128. MR 303460
- Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. MR 0499948
- Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645. MR 447954, DOI https://doi.org/10.1090/S0002-9904-1977-14325-5
- Tobias H. Colding and William P. Minicozzi II, Harmonic functions on manifolds, Ann. of Math. (2) 146 (1997), no. 3, 725–747. MR 1491451, DOI https://doi.org/10.2307/2952459
- Alain Connes, Dennis Sullivan, and Nicolas Teleman, Quasiconformal mappings, operators on Hilbert space, and local formulae for characteristic classes, Topology 33 (1994), no. 4, 663–681. MR 1293305, DOI https://doi.org/10.1016/0040-9383%2894%2990003-5
- Robert J. Daverman, Decompositions of manifolds, Pure and Applied Mathematics, vol. 124, Academic Press, Inc., Orlando, FL, 1986. MR 872468
- Guy David and Stephen Semmes, Strong $A_\infty $ weights, Sobolev inequalities and quasiconformal mappings, Analysis and partial differential equations, Lecture Notes in Pure and Appl. Math., vol. 122, Dekker, New York, 1990, pp. 101–111. MR 1044784
- Guy David and Stephen Semmes, Fractured fractals and broken dreams, Oxford Lecture Series in Mathematics and its Applications, vol. 7, The Clarendon Press, Oxford University Press, New York, 1997. Self-similar geometry through metric and measure. MR 1616732
- S. K. Donaldson and D. P. Sullivan, Quasiconformal $4$-manifolds, Acta Math. 163 (1989), no. 3-4, 181–252. MR 1032074, DOI https://doi.org/10.1007/BF02392736
- J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984. MR 731258
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
- Robert D. Edwards, The topology of manifolds and cell-like maps, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, pp. 111–127. MR 562601
- J. Eells and B. Fuglede, Harmonic maps between Riemannian polyhedra, Cambridge Tracts in Mathematics, vol. 142, Cambridge University Press, Cambridge, 2001. With a preface by M. Gromov. MR 1848068
- Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
- Eugene B. Fabes, Carlos E. Kenig, and Raul P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77–116. MR 643158, DOI https://doi.org/10.1080/03605308208820218
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325
- B. Franchi, P. Hajłasz, and P. Koskela, Definitions of Sobolev classes on metric spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 6, 1903–1924. MR 1738070
- Michael Hartley Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982), no. 3, 357–453. MR 679066
- Michael H. Freedman and Frank Quinn, Topology of 4-manifolds, Princeton Mathematical Series, vol. 39, Princeton University Press, Princeton, NJ, 1990. MR 1201584
- Joseph H. G. Fu, Bi-Lipschitz rough normal coordinates for surfaces with an $L^1$ curvature bound, Indiana Univ. Math. J. 47 (1998), no. 2, 439–453. MR 1647908, DOI https://doi.org/10.1512/iumj.1998.47.1527
- Bent Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171–219. MR 97720, DOI https://doi.org/10.1007/BF02404474
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190
- S. M. Gersten (ed.), Essays in group theory, Mathematical Sciences Research Institute Publications, vol. 8, Springer-Verlag, New York, 1987. MR 919826
- Mikhael Gromov, Carnot-Carathéodory spaces seen from within, Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 79–323. MR 1421823
- Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, vol. 152, Birkhäuser Boston, Inc., Boston, MA, 1999. Based on the 1981 French original [ MR0682063 (85e:53051)]; With appendices by M. Katz, P. Pansu and S. Semmes; Translated from the French by Sean Michael Bates. MR 1699320
- M. Gromov and P. Pansu, Rigidity of lattices: an introduction, Geometric topology: recent developments (Montecatini Terme, 1990) Lecture Notes in Math., vol. 1504, Springer, Berlin, 1991, pp. 39–137. MR 1168043, DOI https://doi.org/10.1007/BFb0094289
- M. Gromov and W. Thurston, Pinching constants for hyperbolic manifolds, Invent. Math. 89 (1987), no. 1, 1–12. MR 892185, DOI https://doi.org/10.1007/BF01404671
- Peter Haïssinsky, Rigidity and expansion for rational maps, J. London Math. Soc. (2) 63 (2001), no. 1, 128–140. MR 1802762, DOI https://doi.org/10.1112/S0024610700001563
- Piotr Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), no. 4, 403–415. MR 1401074, DOI https://doi.org/10.1007/BF00275475
- Piotr Hajłasz, Sobolev spaces on metric-measure spaces, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002) Contemp. Math., vol. 338, Amer. Math. Soc., Providence, RI, 2003, pp. 173–218. MR 2039955, DOI https://doi.org/10.1090/conm/338/06074
- Piotr Hajłasz and Pekka Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101. MR 1683160, DOI https://doi.org/10.1090/memo/0688
- Piotr Hajłasz and Olli Martio, Traces of Sobolev functions on fractal type sets and characterization of extension domains, J. Funct. Anal. 143 (1997), no. 1, 221–246. MR 1428124, DOI https://doi.org/10.1006/jfan.1996.2959
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917
- Juha Heinonen, The branch set of a quasiregular mapping, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 691–700. MR 1957076
- Juha Heinonen, Tero Kilpeläinen, and Olli Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. MR 1207810
- Juha Heinonen and Pekka Koskela, Definitions of quasiconformality, Invent. Math. 120 (1995), no. 1, 61–79. MR 1323982, DOI https://doi.org/10.1007/BF01241122
- Juha Heinonen and Pekka Koskela, From local to global in quasiconformal structures, Proc. Nat. Acad. Sci. U.S.A. 93 (1996), no. 2, 554–556. MR 1372507, DOI https://doi.org/10.1073/pnas.93.2.554
- Juha Heinonen and Pekka Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1–61. MR 1654771, DOI https://doi.org/10.1007/BF02392747
- Juha Heinonen and Pekka Koskela, A note on Lipschitz functions, upper gradients, and the Poincaré inequality, New Zealand J. Math. 28 (1999), no. 1, 37–42. MR 1691958
- Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, and Jeremy T. Tyson, Sobolev classes of Banach space-valued functions and quasiconformal mappings, J. Anal. Math. 85 (2001), 87–139. MR 1869604, DOI https://doi.org/10.1007/BF02788076
- Juha Heinonen and Seppo Rickman, Geometric branched covers between generalized manifolds, Duke Math. J. 113 (2002), no. 3, 465–529. MR 1909607, DOI https://doi.org/10.1215/S0012-7094-02-11333-7
- Juha Heinonen and Dennis Sullivan, On the locally branched Euclidean metric gauge, Duke Math. J. 114 (2002), no. 1, 15–41. MR 1915034, DOI https://doi.org/10.1215/S0012-7094-02-11412-4
- Ernst Heintze, On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974), 23–34. MR 353210, DOI https://doi.org/10.1007/BF01344139
- David A. Herron, Conformal deformations of uniform Loewner spaces, Math. Proc. Cambridge Philos. Soc. 136 (2004), no. 2, 325–360. MR 2040578, DOI https://doi.org/10.1017/S0305004103007199
- Francis Hirsch and Gilles Lacombe, Elements of functional analysis, Graduate Texts in Mathematics, vol. 192, Springer-Verlag, New York, 1999. Translated from the 1997 French original by Silvio Levy. MR 1678925
- Tadeusz Iwaniec, The Gehring lemma, Quasiconformal mappings and analysis (Ann Arbor, MI, 1995) Springer, New York, 1998, pp. 181–204. MR 1488451
- David Jerison, The Poincaré inequality for vector fields satisfying Hörmander’s condition, Duke Math. J. 53 (1986), no. 2, 503–523. MR 850547, DOI https://doi.org/10.1215/S0012-7094-86-05329-9
- Sari Kallunki and Pekka Koskela, Exceptional sets for the definition of quasiconformality, Amer. J. Math. 122 (2000), no. 4, 735–743. MR 1771571
- Sari Kallunki and Nageswari Shanmugalingam, Modulus and continuous capacity, Ann. Acad. Sci. Fenn. Math. 26 (2001), no. 2, 455–464. MR 1833251
- Michael Kapovich and Bruce Kleiner, Hyperbolic groups with low-dimensional boundary, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 5, 647–669 (English, with English and French summaries). MR 1834498, DOI https://doi.org/10.1016/S0012-9593%2800%2901049-1
- Stephen Keith, Modulus and the Poincaré inequality on metric measure spaces, Math. Z. 245 (2003), no. 2, 255–292. MR 2013501, DOI https://doi.org/10.1007/s00209-003-0542-y
- Stephen Keith, A differentiable structure for metric measure spaces, Adv. Math. 183 (2004), no. 2, 271–315. MR 2041901, DOI https://doi.org/10.1016/S0001-8708%2803%2900089-6
- Stephen Keith, Measurable differentiable structures and the Poincaré inequality, Indiana Univ. Math. J. 53 (2004), no. 4, 1127–1150. MR 2095451, DOI https://doi.org/10.1512/iumj.2004.53.2417
- S. Keith and T. Laakso, Conformal Assouad dimension and modulus, Geom. Funct. Anal. 14 (2004), no. 6, 1278–1321. MR 2135168, DOI https://doi.org/10.1007/s00039-004-0492-5
- Stephen Keith and Kai Rajala, A remark on Poincaré inequalities on metric measure spaces, Math. Scand. 95 (2004), no. 2, 299–304. MR 2098359, DOI https://doi.org/10.7146/math.scand.a-14461 kezh:self S. Keith and X. Zhong, The Poincaré inequality is an open ended condition, Annals of Mathematics (to appear).
- Jun Kigami, Analysis on fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge, 2001. MR 1840042
- Tero Kilpeläinen, A remark on the uniqueness of quasi continuous functions, Ann. Acad. Sci. Fenn. Math. 23 (1998), no. 1, 261–262. MR 1601887
- Juha Kinnunen and Olli Martio, Potential theory of quasiminimizers, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 2, 459–490. MR 1996447
- Juha Kinnunen and Olli Martio, Sobolev space properties of superharmonic functions on metric spaces, Results Math. 44 (2003), no. 1-2, 114–129. MR 2011911, DOI https://doi.org/10.1007/BF03322918
- Juha Kinnunen and Nageswari Shanmugalingam, Regularity of quasi-minimizers on metric spaces, Manuscripta Math. 105 (2001), no. 3, 401–423. MR 1856619, DOI https://doi.org/10.1007/s002290100193
- Juha Kinnunen and Nageswari Shanmugalingam, Polar sets on metric spaces, Trans. Amer. Math. Soc. 358 (2006), no. 1, 11–37. MR 2171221, DOI https://doi.org/10.1090/S0002-9947-05-04085-7 kleiner:icm B. Kleiner, The asymptotic geometry of negatively curved spaces: uniformization, geome- trization and rigidity, ICM Proceedings, Madrid (2006).
- Nicholas J. Korevaar and Richard M. Schoen, Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (1993), no. 3-4, 561–659. MR 1266480, DOI https://doi.org/10.4310/CAG.1993.v1.n4.a4
- Pekka Koskela, Removable sets for Sobolev spaces, Ark. Mat. 37 (1999), no. 2, 291–304. MR 1714767, DOI https://doi.org/10.1007/BF02412216
- Pekka Koskela, Upper gradients and Poincaré inequalities, Lecture notes on analysis in metric spaces (Trento, 1999) Appunti Corsi Tenuti Docenti Sc., Scuola Norm. Sup., Pisa, 2000, pp. 55–69. MR 2023123
- Pekka Koskela, Sobolev spaces and quasiconformal mappings on metric spaces, European Congress of Mathematics, Vol. I (Barcelona, 2000) Progr. Math., vol. 201, Birkhäuser, Basel, 2001, pp. 457–467. MR 1905335
- Pekka Koskela and Paul MacManus, Quasiconformal mappings and Sobolev spaces, Studia Math. 131 (1998), no. 1, 1–17. MR 1628655
- Pekka Koskela, Kai Rajala, and Nageswari Shanmugalingam, Lipschitz continuity of Cheeger-harmonic functions in metric measure spaces, J. Funct. Anal. 202 (2003), no. 1, 147–173. MR 1994768, DOI https://doi.org/10.1016/S0022-1236%2802%2900090-3
- P. Koskela, N. Shanmugalingam, and H. Tuominen, Removable sets for the Poincaré inequality on metric spaces, Indiana Univ. Math. J. 49 (2000), no. 1, 333–352. MR 1777027, DOI https://doi.org/10.1512/iumj.2000.49.1719
- Pekka Koskela, Nageswari Shanmugalingam, and Jeremy T. Tyson, Dirichlet forms, Poincaré inequalities, and the Sobolev spaces of Korevaar and Schoen, Potential Anal. 21 (2004), no. 3, 241–262. MR 2075670, DOI https://doi.org/10.1023/B%3APOTA.0000033331.88514.6e
- Kazuhiro Kuwae, Yoshiroh Machigashira, and Takashi Shioya, Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces, Math. Z. 238 (2001), no. 2, 269–316. MR 1865418, DOI https://doi.org/10.1007/s002090100252
- T. J. Laakso, Ahlfors $Q$-regular spaces with arbitrary $Q>1$ admitting weak Poincaré inequality, Geom. Funct. Anal. 10 (2000), no. 1, 111–123. MR 1748917, DOI https://doi.org/10.1007/s000390050003
- Jean-François Lafont, Rigidity result for certain three-dimensional singular spaces and their fundamental groups, Geom. Dedicata 109 (2004), 197–219. MR 2114076, DOI https://doi.org/10.1007/s10711-004-1526-8
- N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy; Die Grundlehren der mathematischen Wissenschaften, Band 180. MR 0350027
- D. G. Larman, A new theory of dimension, Proc. London Math. Soc. (3) 17 (1967), 178–192. MR 203691, DOI https://doi.org/10.1112/plms/s3-17.1.178
- James R. Lee, Manor Mendel, and Assaf Naor, Metric structures in $L_1$: dimension, snowflakes, and average distortion, European J. Combin. 26 (2005), no. 8, 1180–1190. MR 2163751, DOI https://doi.org/10.1016/j.ejc.2004.07.002 levi:acl B. Levi, Sul principio di Dirichlet, Rend. Circ. Mat. Palermo 22 (1906), 293–359.
- Genadi Levin and Sebastian van Strien, Bounds for maps of an interval with one critical point of inflection type. II, Invent. Math. 141 (2000), no. 2, 399–465. MR 1775218, DOI https://doi.org/10.1007/s002220000075 lv:ricci J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Annals of Mathematics (to appear). lv:pi ---, Weak curvature conditions and functional inequalities, Journal of Functional Analysis (to appear).
- Jouni Luukkainen and Eero Saksman, Every complete doubling metric space carries a doubling measure, Proc. Amer. Math. Soc. 126 (1998), no. 2, 531–534. MR 1443161, DOI https://doi.org/10.1090/S0002-9939-98-04201-4
- J. Luukkainen and J. Väisälä, Elements of Lipschitz topology, Ann. Acad. Sci. Fenn. Ser. A I Math. 3 (1977), no. 1, 85–122. MR 515647, DOI https://doi.org/10.5186/aasfm.1977.0315
- Jan Malý and William P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, Mathematical Surveys and Monographs, vol. 51, American Mathematical Society, Providence, RI, 1997. MR 1461542
- Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890
- Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova. MR 817985
- John Mitchell, On Carnot-Carathéodory metrics, J. Differential Geom. 21 (1985), no. 1, 35–45. MR 806700
- Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR 0202511
- G. D. Mostow, Strong rigidity of locally symmetric spaces, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. Annals of Mathematics Studies, No. 78. MR 0385004
- G. D. Mostow, A remark on quasiconformal mappings on Carnot groups, Michigan Math. J. 41 (1994), no. 1, 31–37. MR 1260606, DOI https://doi.org/10.1307/mmj/1029004912
- F. Nazarov, S. Treil, and A. Volberg, The $Tb$-theorem on non-homogeneous spaces, Acta Math. 190 (2003), no. 2, 151–239. MR 1998349, DOI https://doi.org/10.1007/BF02392690
- Shin-ichi Ohta, Cheeger type Sobolev spaces for metric space targets, Potential Anal. 20 (2004), no. 2, 149–175. MR 2032946, DOI https://doi.org/10.1023/A%3A1026359313080
- Shin-ichi Ohta, Harmonic maps and totally geodesic maps between metric spaces, Tohoku Mathematical Publications, vol. 28, Tohoku University, Mathematical Institute, Sendai, 2004. Dissertation, Tohoku University, Sendai, 2004. MR 2051353
- Pierre Pansu, Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 2, 177–212 (French, with English summary). MR 1024425, DOI https://doi.org/10.5186/aasfm.1989.1424
- Pierre Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129 (1989), no. 1, 1–60 (French, with English summary). MR 979599, DOI https://doi.org/10.2307/1971484
- Conrad Plaut, Metric spaces of curvature $\geq k$, Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 819–898. MR 1886682
- Hans Rademacher, Über partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln und über die Transformation der Doppelintegrale, Math. Ann. 79 (1919), no. 4, 340–359 (German). MR 1511935, DOI https://doi.org/10.1007/BF01498415 raj:alex K. Rajala, Alexandrov-avaruudet, ylägradientit ja Poincarén epäyhtälö (in Finnish), Pro gradu -tutkielma. Jyväskylän yliopisto (2000), 1–41.
- Yu. G. Reshetnyak, Sobolev classes of functions with values in a metric space, Sibirsk. Mat. Zh. 38 (1997), no. 3, 657–675, iii–iv (Russian, with Russian summary); English transl., Siberian Math. J. 38 (1997), no. 3, 567–583. MR 1457485, DOI https://doi.org/10.1007/BF02683844
- Yu. G. Reshetnyak, On the conformal representation of Alexandrov surfaces, Papers on analysis, Rep. Univ. Jyväskylä Dep. Math. Stat., vol. 83, Univ. Jyväskylä, Jyväskylä, 2001, pp. 287–304. MR 1886629
- Juha Rissanen, Wavelets on self-similar sets and the structure of the spaces $M^{1,p}(E,\mu )$, Ann. Acad. Sci. Fenn. Math. Diss. 125 (2002), 46. Dissertation, University of Jyväskylä, Jyväskylä, 2002. MR 1880640
- Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
- Stanisław Saks, Theory of the integral, Second revised edition, Dover Publications, Inc., New York, 1964. English translation by L. C. Young; With two additional notes by Stefan Banach. MR 0167578
- Laurent Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom. 36 (1992), no. 2, 417–450. MR 1180389
- L. Schwartz, Théorie des distributions. Tome I, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1091, Hermann & Cie., Paris, 1950 (French). Publ. Inst. Math. Univ. Strasbourg 9. MR 0035918
- Stephen W. Semmes, Finding structure in sets with little smoothness, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 875–885. MR 1403987
- S. Semmes, Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities, Selecta Math. (N.S.) 2 (1996), no. 2, 155–295. MR 1414889, DOI https://doi.org/10.1007/BF01587936
- Stephen Semmes, Good metric spaces without good parameterizations, Rev. Mat. Iberoamericana 12 (1996), no. 1, 187–275. MR 1387590, DOI https://doi.org/10.4171/RMI/198
- Stephen Semmes, On the nonexistence of bi-Lipschitz parameterizations and geometric problems about $A_\infty $-weights, Rev. Mat. Iberoamericana 12 (1996), no. 2, 337–410. MR 1402671, DOI https://doi.org/10.4171/RMI/201
- Stephen Semmes, Mappings and spaces, Quasiconformal mappings and analysis (Ann Arbor, MI, 1995) Springer, New York, 1998, pp. 347–368. MR 1488459
- Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, vol. 152, Birkhäuser Boston, Inc., Boston, MA, 1999. Based on the 1981 French original [ MR0682063 (85e:53051)]; With appendices by M. Katz, P. Pansu and S. Semmes; Translated from the French by Sean Michael Bates. MR 1699320
- Stephen Semmes, Some novel types of fractal geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2001. MR 1815356
- Stephen Semmes, Some topics concerning homeomorphic parameterizations, Publ. Mat. 45 (2001), no. 1, 3–67. MR 1829576, DOI https://doi.org/10.5565/PUBLMAT_45101_01 sh:thesis N. Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Ph.D. thesis, University of Michigan, 1999.
- Nageswari Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000), no. 2, 243–279. MR 1809341, DOI https://doi.org/10.4171/RMI/275
- Nageswari Shanmugalingam, Harmonic functions on metric spaces, Illinois J. Math. 45 (2001), no. 3, 1021–1050. MR 1879250
- Nageswari Shanmugalingam, Some convergence results for $p$-harmonic functions on metric measure spaces, Proc. London Math. Soc. (3) 87 (2003), no. 1, 226–246. MR 1978575, DOI https://doi.org/10.1112/S0024611503014151
- L. Siebenmann and D. Sullivan, On complexes that are Lipschitz manifolds, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), Academic Press, New York-London, 1979, pp. 503–525. MR 537747 sob:esti S. L. Sobolev, On some estimates relating to families of functions having derivatives that are square integrable, Dokl. Akad. Nauk SSSR 1 (1936), 267–270 (in Russian). sob:func ---, On a theorem in functional analysis, Math. Sb. 4 (1938), 471–497 (in Russian).
- S. L. Sobolev, Some applications of functional analysis in mathematical physics, Translations of Mathematical Monographs, vol. 90, American Mathematical Society, Providence, RI, 1991. Translated from the third Russian edition by Harold H. McFaden; With comments by V. P. Palamodov. MR 1125990
- Michael Spivak, A comprehensive introduction to differential geometry. Vol. I, 2nd ed., Publish or Perish, Inc., Wilmington, Del., 1979. MR 532830
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Karl-Theodor Sturm, On the geometry of metric measure spaces. I, Acta Math. 196 (2006), no. 1, 65–131. MR 2237206, DOI https://doi.org/10.1007/s11511-006-0002-8
- Karl-Theodor Sturm, On the geometry of metric measure spaces. I, Acta Math. 196 (2006), no. 1, 65–131. MR 2237206, DOI https://doi.org/10.1007/s11511-006-0002-8
- Dennis Sullivan, Hyperbolic geometry and homeomorphisms, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), Academic Press, New York-London, 1979, pp. 543–555. MR 537749
- Dennis Sullivan, Exterior $d$, the local degree, and smoothability, Prospects in topology (Princeton, NJ, 1994) Ann. of Math. Stud., vol. 138, Princeton Univ. Press, Princeton, NJ, 1995, pp. 328–338. MR 1368667 ton:acl L. Tonelli, Sulla quadratura delle superficie, Atti Reale Accad. Lincei 3 (1926), 633–638.
- Tatiana Toro, Surfaces with generalized second fundamental form in $L^2$ are Lipschitz manifolds, J. Differential Geom. 39 (1994), no. 1, 65–101. MR 1258915
- Tatiana Toro, Geometric conditions and existence of bi-Lipschitz parameterizations, Duke Math. J. 77 (1995), no. 1, 193–227. MR 1317632, DOI https://doi.org/10.1215/S0012-7094-95-07708-4
- Hans Triebel, The structure of functions, Monographs in Mathematics, vol. 97, Birkhäuser Verlag, Basel, 2001. MR 1851996
- P. Tukia and J. Väisälä, Lipschitz and quasiconformal approximation and extension, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), no. 2, 303–342 (1982). MR 658932, DOI https://doi.org/10.5186/aasfm.1981.0626
- Jeremy Tyson, Quasiconformality and quasisymmetry in metric measure spaces, Ann. Acad. Sci. Fenn. Math. 23 (1998), no. 2, 525–548. MR 1642158
- Jeremy T. Tyson, Metric and geometric quasiconformality in Ahlfors regular Loewner spaces, Conform. Geom. Dyn. 5 (2001), 21–73. MR 1872156, DOI https://doi.org/10.1090/S1088-4173-01-00064-9
- Nicolas Th. Varopoulos, Fonctions harmoniques sur les groupes de Lie, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), no. 17, 519–521 (French, with English summary). MR 892879
- A. L. Vol′berg and S. V. Konyagin, On measures with the doubling condition, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 3, 666–675 (Russian); English transl., Math. USSR-Izv. 30 (1988), no. 3, 629–638. MR 903629 ren:pi M.-K. von Renesse, On local Poincaré via transportation, Mathematische Zeitschrift (to appear).
- Nik Weaver, Lipschitz algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1999. MR 1832645
- Nik Weaver, Lipschitz algebras and derivations. II. Exterior differentiation, J. Funct. Anal. 178 (2000), no. 1, 64–112. MR 1800791, DOI https://doi.org/10.1006/jfan.2000.3637
- Hassler Whitney, Geometric integration theory, Princeton University Press, Princeton, N. J., 1957. MR 0087148
- Jang-Mei Wu, Hausdorff dimension and doubling measures on metric spaces, Proc. Amer. Math. Soc. 126 (1998), no. 5, 1453–1459. MR 1443418, DOI https://doi.org/10.1090/S0002-9939-98-04317-2
- Kôsaku Yosida, Functional analysis, 6th ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 123, Springer-Verlag, Berlin-New York, 1980. MR 617913
- William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 28A75, 49J52, 53C23, 51-02
Retrieve articles in all journals with MSC (2000): 28A75, 49J52, 53C23, 51-02
Additional Information
Juha Heinonen
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
Email:
juha@umich.edu
Received by editor(s):
November 7, 2005
Received by editor(s) in revised form:
June 16, 2006
Published electronically:
January 24, 2007
Additional Notes:
This paper constitutes an expanded version of the AMS invited address given by the author in Boulder, Colorado, in October 2003
The author is grateful for the support and hospitality of MSRI and UC Berkeley, where the bulk of this paper was prepared during a visit in 2002-2003. Supported also by NSF grants DMS 0353549 and DMS 0244421.
Article copyright:
© Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.