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A NORMAL FORM FOR ELLIPTIC CURVES

HAROLD M. EDWARDS

Abstract. The normal form x2+y2 = a2+a2x2y2 for elliptic curves simplifies
formulas in the theory of elliptic curves and functions. Its principal advantage
is that it allows the addition law, the group law on the elliptic curve, to be
stated explicitly

X =
1

a
· xy′ + x′y

1 + xyx′y′ , Y =
1

a
· yy′ − xx′

1 − xyx′y′ .

The j-invariant of an elliptic curve determines 24 values of a for which the
curve is equivalent to x2 + y2 = a2 + a2x2y2, namely, the roots of (x8 + 14x4

+1)3 − j
16

(x5 − x)4. The symmetry in x and y implies that the two tran-

scendental functions x(t) and y(t) that parameterize x2 + y2 = a2 + a2x2y2

in a natural way are essentially the same function, just as the parameterizing
functions sin t and cos t of the circle are essentially the same function. Such a
parameterizing function is given explicitly by a quotient of two simple theta
series depending on a parameter τ in the upper half plane.

Part I. The Addition Formula

1. Why elliptic functions?

The double periodicity of elliptic functions, the property by which they are often
defined today, is not what attracted attention to them in the first place. Abel, whose
own contribution to the study of elliptic functions was enormous, began his long
memoir [1] about them with the observation that “the first idea of [elliptic] functions
was given by the immortal Euler, when he demonstrated that the equation with
variables separated

(1.1)
dx√

α + βx + γx2 + δx3 + εx4
+

dy√
α + βy + γy2 + δy3 + εy4

= 0

can be integrated algebraically.” Thus, at least in Abel’s opinion, the original
motive of the theory was the generalization to fourth degree polynomials f(x) of
the integration of differentials dx√

f(x)
for second degree polynomials f(x), which

had led to some of the most important transcendental functions studied by early
calculus. Abel wanted to extend the repertory of transcendental functions available
to mathematics.

Today the theory is viewed more in terms of elliptic curves than elliptic functions,
and interest centers on their group structures. When an elliptic curve is realized as
a cubic curve and when a point of the curve is chosen to serve as the identity of
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394 HAROLD M. EDWARDS

the group operation, the group structure can be described in terms of the sets of
three points in which lines intersect the curve, a description that is now well known
and widely taught. The connection between this now-familiar group structure and
Euler’s “algebraic integration” that inspired Abel is far from obvious, but in fact
the two are aspects of the same phenomenon.

A third approach to that phenomenon was developed by Abel in the introduction
to his Paris memoir [2], where he sketched a broad generalization of the group
construction. Instead of intersecting a cubic curve with lines, he intersected an
arbitrary curve with an arbitrary family of auxiliary curves. As the parameters in
the defining equation of the auxiliary curve vary, the intersection points vary along
the given curve. (See Section 10 for a fuller discussion.) Abel discovered that, under
suitable conditions, N intersection points move in this way with N − g degrees of
freedom, where g depends only on the given curve, not on N or on the family of
auxiliary curves that is used, provided the family is sufficiently general. This g is—
again under suitable conditions—the genus of the given curve. When that curve is
a nonsingular cubic and the auxiliary curves are lines, there are N = 3 intersection
points that move with N −g = 2 degrees of freedom because two of the intersection
points can be chosen arbitrarily. Therefore, g is 1 in this case. It was surely
this interpretation of the addition on a nonsingular cubic and its generalization to
elliptic curves presented in other ways, such as the curve y2 = 1−x4, that motivated
Abel’s more general construction.

The g constraints on the motion of N points along the given curve are expressed
in the general case by g linearly independent differential equations determined by
the holomorphic differentials on the curve (see [4], Essay 4.6). For an elliptic curve
of the form z2 = α + βx + γx2 + δx3 + εx4, the holomorphic differentials are
simply the constant multiples of dx√

α+βx+γx2+δx3+εx4
, the differential that appears

in the equation (1.1) that Euler “integrated algebraically.” In this way, Abel’s
construction connects Euler’s integration to the addition operation.

This paper presents a fourth view of the above phenomenon that incorporates
the three that have been mentioned: It integrates (1.1) (see Section 9 below),
it expresses the addition operation in explicit algebraic form (Section 8), and it
constructs the (N − 1)-dimensional families of motions of sets of N points on an
elliptic curve that are described by Abel’s construction (Section 10).

Elliptic functions are meromorphic functions that parameterize elliptic curves.
The classic book of Hurwitz and Courant [7] presents the theory of elliptic functions
in two ways, giving both the Jacobi notation (which is similar to Abel’s but more
fully developed) and the Weierstrass notation (which is favored by most modern
treatments). The simple explicit form of the addition law developed in Part II leads
to a normalization of elliptic functions in Part III that seems preferable to both of
these. In this normalization, the parameterizing functions, like the parameterizing
functions t �→ (sin t, cos t) of the circle, are essentially the same function; specifically,
x2 + y2 = a2 + a2x2y2 has the parameterization t �→ (ψ(t − 1

2 ), ψ(t)) where ψ(t) is
the elliptic function given by formula (15.1) for a complex number τ in the upper
half plane that is found by solving a certain transcendental equation (Section 22).
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2. The addition formula for x2 + y2 + x2y2 = 1

Euler’s very first paper [5] on the theory of elliptic functions contains formulas
that strongly suggest1 an explicit “addition formula” in the special case of the ellip-
tic curve x2 + y2 +x2y2 = 1. This curve, which becomes z2 = 1−x4 when one sets
z = y(1+x2), was of great interest to Gauss; the last entry of his famous Tagebuch
relates to it, as does his reference to “the transcendental functions which depend
on the integral

∫
dx√
1−x4 ” in Article 335 of the Disquisitiones Arithmeticae. In notes

published posthumously in his Werke [6], Gauss stated explicitly the formulas Euler
had hinted at decades earlier, putting them in the form

(2.1) S =
sc′ + s′c

1 − ss′cc′
, C =

cc′ − ss′

1 + ss′cc′
.

Gauss’s choice of the letters s and c brings out the analogy with the addition laws
for sines and cosines. (The numerators are the addition laws for sines and cosines.)
He in fact defines two transcendental functions s(t) and c(t) with the property that
(2.1) expresses (S, C) = (s(t + t′), c(t + t′)) in terms of (s, c) = (s(t), c(t)) and
(s′, c′) = (s(t′), c(t′)). The definition of s(t) takes the implicit form t =

∫ s(t)

0
dx√
1−x4

analogous to t =
∫ sin t

0
dx√
1−x2 , while c(t) =

√
1−s(t)2

1+s(t)2 (with c(0) = 1) is analogous

to cos t =
√

1 − sin2 t (with cos 0 = 1).
These remarkable Euler-Gauss formulas apply only to the specific curve s2+c2+

s2c2 = 1, but they are a special case of a formula that describes the group law of
an arbitrary elliptic curve.

3. An addition formula in the general case

Elliptic curves and elliptic functions have been studied ever since Euler’s time,
and that study has often been intense, as it is now. In view of this long history,
it seems unlikely that anything fundamentally new remains to be discovered in the
most elementary parts of the theory. Nonetheless, I have not been able to find the
following generalization of (2.1) in the literature.2 If it is not new, it is certainly
not as well known as it deserves to be.

Theorem 3.1. If a is a constant for which a5 �= a, the formulas

(3.1) X =
1
a
· xy′ + yx′

1 + xyx′y′ , Y =
1
a
· yy′ − xx′

1 − xyx′y′

describe the addition formula for the elliptic curve x2 + y2 = a2 + a2x2y2.

As will be shown in Section 5, every elliptic curve is equivalent—in an appropriate
sense—to one in this form x2 + y2 = a2 + a2x2y2, so (3.1) can be used to describe
explicitly the addition law on any elliptic curve.

Formula (2.1) is the case a =
√

i, x =
√

i · s and y =
√

i · c of (3.1).
In Section 4, an elliptic curve is defined to be one of the form z2 = f(x) in which

f(x) is a polynomial of degree 3 or 4 with distinct roots. Setting z = y(1 − a2x2)
puts x2 + y2 = a2 + a2x2y2 in the form z2 = (a2 − x2)(1 − a2x2); when a �= 0,

1See especially his Theorem 6 and its Corollary 3.
2Abel’s form of the addition law is in his formula (10) of [1]. It serves the same purpose as

(3.1) but is less simple and less symmetrical. Jacobi’s form of the addition law is similar to Abel’s;
see §18 of [9]. The addition formula for the Weierstrass P-function is more complicated. See [7],
II, 1, §8. Also, see [10], III, 4; and [13], I, 4.
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the polynomial a2x4 − (a4 + 1)x2 + a2 on the right has degree 4, so the equation
describes an elliptic curve provided this polynomial has distinct roots, which is true
if and only if (a4 + 1)2 − 4a4 = (a4 − 1)2 is nonzero. In short, a5 �= a if and only if
x2 + y2 = a2 + a2x2y2 is an elliptic curve.

As in Gauss’s case, (3.1) can be regarded as expressing (X, Y ) = (x(t + t′),
y(t + t′)) in terms of (x, y) = (x(t), y(t)) and (x′, y′) = (x(t′), y(t′)), where x(t)
and y(t) are the transcendental functions defined by t =

∫ x(t)

0
dx√

(a2−x2)(1−a2x2)
and

y(t) =
√

a2−x(t)2

1−a2x(t)2 (with y(0) = a). However, the theorem is purely algebraic, and
the proof does not need transcendental functions or even complex numbers, as is
shown by the proof in Section 8.

Part II. The Algebraic Theory of Elliptic Curves

4. The field of rational functions on a curve

The key to dealing with algebraic curves over a ground field that is not alge-
braically closed is to abandon the notion of points of a curve and to work instead
with rational functions on the curve. These rational functions form a field, the
algebraic properties of which describe geometric properties of the curve in many
cases. Two curves are birationally equivalent if their fields of rational functions are
isomorphic.

This paper deals only with elliptic curves, which will be defined3 to be curves
that can be presented in the form z2 = f(x), where f(x) is a polynomial of degree
3 or 4 with distinct roots that has coefficients in an algebraic number field. Thus,
an elliptic curve is presented by giving (1) an algebraic number field K and (2) a
polynomial f(x) of degree 3 or 4 with coefficients in K that is relatively prime to
its derivative.

The field of rational functions on z2 = f(x) is, very concretely, the field whose
elements are represented by expressions of the form r(x) + s(x)z, where r(x) and
s(x) are rational functions of x with coefficients in K (i.e., quotients of polynomials
in x with coefficients in K in which the denominator is not zero), added in the
obvious way and multiplied by multiplying in the usual way and using the relation
z2 = f(x) to eliminate z2. Such a field is an elliptic function field.

The field of rational functions on the curve x2+y2 = a2+a2x2y2 is not an “elliptic
function field” in this sense, but it becomes one when z = y(1−a2x2) is used to put it
in the form z2 = (a2−x2)(1−a2x2) as above. Since y = z

1−a2x2 , there is a birational
equivalence between x2+y2 = a2 +a2x2y2 and z2 = (a2−x2)(1−a2x2) in the sense
that x and y can be expressed rationally in terms of x and z and conversely. In
this way, the equation x2 + y2 = a2 + a2x2y2 of Theorem 3.1 determines an elliptic
function field.

3It would be more satisfying to define an elliptic curve to be a curve of genus one in the sense
that the genus of a curve is defined in [4], but the justification of this definition would be too great
a digression. That definition is, however, equivalent the one used here, as can be seen by applying
the Riemann-Roch theorem—see [4]—to conclude that a function field of genus one contains an
element with just two simple poles. It follows first that the field can be defined by a relation
χ(x, y) = 0 whose degree in y is 2 and then (complete the square) that the relation can be put in
the form z2 = f(x) where f(x) is a polynomial with distinct roots. Finally, a curve defined by a
relation of this form has genus one if and only if deg f is 3 or 4, as is shown in [4] (Example 6 of
Essay 4.5).
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An element of an elliptic function field is called a constant if it is a root of a
polynomial with integer coefficients. As is easily seen, an element r(x) + s(x)z is
constant if and only if r(x) is an element of K and s(x) is zero. (In the terminology
of [4], 1 and z are a normal basis of the function field.) In short, the field K, viewed
in the obvious way as a subfield of the function field, is the field of constants.4

Extending K—adjoining constants—changes the function field determined by
z2 = f(x), so it does not give a birationally equivalent “curve”, even though the
field of functions corresponds in some sense to the same curve. For this reason, an
elliptic function field will be called equivalent to a field that is obtained from it by
extending the underlying field of constants K, or, more generally, when there is a
third field to which they are both equivalent in this sense. In short, elliptic function
fields are equivalent if they can be made isomorphic by adjoining enough constants.

The fact that the ground field K is not algebraically closed means that geomet-
rical constructions often require an extension of the field of constants—for example
to realize the zeros and poles of a given rational function as points. When function
fields that are equivalent in the sense just defined are regarded as describing the
same curve, one can adjoin constants as needed without changing the “geometry”.

5. The normal form

Proposition 5.1. An elliptic function field is equivalent, in the sense of the last
section, to the field of rational functions on x2 + y2 = a2 + a2x2y2 for some a.

Proof. Let K be an algebraic number field, and let f(x) be a polynomial of degree
4 with coefficients in K that has distinct roots. Let constants be adjoined to K, if
necessary, to split f(x) into linear factors, say f(x) = c(x − α1)(x − α2)(x − α3)
×(x − α4), and let

√
c be adjoined, if necessary, to put the defining equation z2 =

f(x) in the form v2 = (x−α1)(x−α2)(x−α3)(x−α4) where v = z√
c
. Thus, if the

f(x) in the defining relation has degree 4, one can assume without loss of generality
that it is (x − α1)(x − α2)(x − α3)(x − α4) for distinct elements α1, α2, α3, α4 of
an algebraic number field K.

There is a simple condition under which two such elliptic function fields, say
the one defined by z2 = (x − α1)(x − α2)(x − α3)(x − α4) and the one defined by
v2 = (u − β1)(u − β2)(u − β3)(u − β4), are equivalent, namely, the condition that
there be a fractional linear transformation x �→ Ax+B

Cx+D that carries αi �→ βi for i = 1,
2, 3, and 4. (Here, of course, A, B, C, and D are constants for which AD �= BC.)
This sufficient condition can be derived in the following way. By straightforward
computation, u − βi = (AD−BC)(x−αi)

(Cx+D)(Cαi+D) for each i when u = Ax+B
Cx+D . The product of

these four formulas shows that (u− β1)(u−β2)(u− β3)(u−β4) is a constant times
(x−α1)(x−α2)(x−α3)(x−α4)

(Cx+D)4 . Thus z2 = (x−α1)(x−α2)(x−α3)(x−α4) implies that
(u−β1)(u−β2)(u−β3)(u−β4) is a constant times the square of z

(Cx+D)2 . When the
square root of the constant is adjoined, if necessary, one finds a birational change of
variables between (z, x) and (v, u) under which z2 = (x−α1)(x−α2)(x−α3)(x−α4)
corresponds to v2 = (u − β1)(u − β2)(u − β3)(u − β4), as was to be shown.

In particular, the fractional linear transformation

x �→ (α4 − α2)(x − α3)
(α2 + α4)(x + α3) − 2α3x − 2α2α4

4Chevalley emphasizes the importance of the field of constants on page 1 of [3].



398 HAROLD M. EDWARDS

carries α2 �→ −1, α3 �→ 0, and α4 �→ 1, so it shows that z2 = (x − α1)(x − α2)
×(x− α3)(x− α4) and v2 = (u− φ) · (u + 1) · u · (u− 1) define equivalent function
fields when

φ =
(α4 − α2)(α1 − α3)

(α2 + α4)(α1 + α3) − 2α3α1 − 2α2α4

=
α1α4 + α2α3 − α1α2 − α3α4

α1α2 + α2α3 + α3α4 + α4α1 − 2α1α3 − 2α2α4
.

(5.1)

The defining relation of the elliptic function field determined by x2 + y2 = a2 +
a2x2y2 can be written ( z

a )2 = (x − a)(x − 1
a )(x + a)(x + 1

a ), from which it follows
that the field is equivalent to the one defined by v2 = (u − φ) · (u + 1) · u · (u − 1)
when φ = −1−1−1−1

1−1+1−1+2a2+2a−2 = − 2
a2+a−2 .

Thus, a given relation z2 = (x−α1)(x−α2)(x−α3)(x−α4) can be transformed
first to v2 = (u−φ) ·(u+1) ·u ·(u−1) and then to x2 +y2 = a2+a2x2y2 when a is a
constant for which φ = − 2

a2+a−2 —i.e., when a is a solution of a4 + 2
φ · a2 + 1 = 0—

which completes the construction when f(x) has degree 4.
When f(x) has degree 3 and distinct roots, it can be replaced by f(x + c), if

necessary, to make its constant term nonzero. Then division by x4 puts the equation
z2 = f(x) in the form ( z

x2 )2 = f1( 1
x ) where f1 is a polynomial of degree 4 with

distinct roots and the construction can proceed as before. �

6. The J-invariant

Since every elliptic function field is equivalent to one of the form x2 + y2 =
a2 + a2x2y2, the problem of determining whether two elliptic function fields are
equivalent reduces to the problem of determining whether two in this normal form
are equivalent. A sufficient condition is:

Proposition 6.1. The elliptic function field determined by x2 + y2 = a2 + a2x2y2

is equivalent to the one determined by x2 + y2 = b2 + b2x2y2 whenever b has one of
the 24 values

(6.1) iεa,
iε

a
, iε · a − 1

a + 1
, iε · a + 1

a − 1
, iε · a − i

a + i
, iε · a + i

a − i

where i is a square root of −1 that is to be adjoined, if necessary, to the field of
constants, and where ε is 0, 1, 2, or 3.

Proof. The values listed in (6.1) are the orbit of a under the group of fractional
linear transformations of the Riemann sphere generated by the two transformations
a �→ ia and a �→ a−1

a+1 . That this group is isomorphic to the group of the cube
becomes clear when one observes that the six points 0, ±1, ±i, ∞ of the Riemann
sphere (these are the values that a is not permitted to have) are permuted by the
group in the same way that the faces of a cube are permuted by the motions of the
cube. Specifically, a �→ ia permutes 1 �→ i �→ −1 �→ −i �→ 1 cyclically while leaving
0 and ∞ fixed, and a �→ a−1

a+1 permutes 1 �→ 0 �→ −1 �→ ∞ �→ 1 cyclically while
leaving i and −i fixed, which is the way that the group of a cube permutes the
faces when the pairs ±1, ±i, and the pair (0,∞) label the three pairs of opposite
faces. Therefore, not only does the group contain just 24 elements, but the orbit
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of any a under the action of the group contains 24 distinct elements—those listed
in (6.1)—except that the values of a that correspond to the vertices of the cube
constitute an orbit that contains only 8 distinct values of a, and the values of a
that correspond to the midpoints of the edges of the cube constitute an orbit that
contains only 12 distinct values.

(The forbidden values of a correspond to the centers of the faces and constitute
an orbit that contains only 6 distinct values. The 12 point orbit is the orbit of

√
i

because this value is invariant under the group element a �→ i
a which interchanges

1 and i, −1 and −i, and 0 and ∞ and therefore leaves invariant the midpoints of
two edges: the one between 1 and i and the one between −1 and −i. The 8 point
orbit is the orbit of (1 + i) ·

√
3−1
2 because this number is invariant under a �→ 1+ia

1−ia
which cyclically permutes 0, 1, and i, as well as ∞, −1 and −i, and which therefore
leaves invariant two vertices, the ones common to the two sets of three faces that
are permuted cyclically.)

The proposition will therefore be proved if the function field of x2 + y2 = a2 +
a2x2y2 is shown to be equivalent to the two function fields obtained by replacing
a with ia and with a−1

a+1 . For this, it will suffice to show that if b = ia or b = a−1
a+1 ,

then there is a fractional linear transformation that carries the set (a,−a, 1
a ,− 1

a )
to the set (b,−b, 1

b ,−1
b ), which is true because x �→ ix is such a fractional linear

transformation in the first case, and x �→ x−1
x+1 is in the second. �

The polynomial K(x) =
∏24

ι=1(x−aι), where aι ranges over the 24 values listed in
(6.1), is a polynomial of degree 24 in x with coefficients that are rational functions
of a. One can find by computation that K(x) = (x8 + 14x4 + 1)3 − C(a)(x5 − x)4

where C(a) is the rational function of a determined by the condition that K(a) = 0,
which is to say that

(6.2) C(a) =
(a8 + 14a4 + 1)3

a4(a4 − 1)4
.

This result is verified by the observation that if C(a) is defined by (6.2), then
(x8 + 14x4 + 1)3 − C(a)(x5 − x)4 is zero when x = a or when a is changed to ia
(obvious) or a−1

a+1 (multiply numerator and denominator of C(a−1
a+1 ) by (a+1)24 and

simplify to find C(a−1
a+1 ) = C(a)), so K(x) is indeed given by this formula.

The usual notation for C is j
16 . The classic book [7] of Hurwitz and Courant

instead uses J = j
1728 = C

108 , which is a natural normalization, because it makes J
equal to 1 on the 12 point orbit and 0 on the 8 point orbit.

(When J = 1, K(x) = (x8 +14x4 +1)3−108(x5−x)4 = (x4 +1)2(x8−34x4 +1)2

has twelve double roots. When J = 0, K(x) = (x8 + 14x4 + 1)3 has 8 triple roots.
For all other finite values of J , K(x) has 24 distinct roots.)

The J that corresponds to an elliptic curve z2 = x4 + ex3 + fx2 + gx + h is

C(a)
108

=
(a4 + 14 + a−4)3

108(a2 − a−2)4
=

((a2 + a−2)2 + 12)3

108((a2 + a−2)2 − 2)2
,

which can be found by setting x4+ex3+fx2+gx+h = (x−α1)(x−α2)(x−α3)(x−α4)
and noting that φ = − 2

a2+a−2 is expressed in terms of the α’s in Section 4. Since J
is by its nature symmetric in the α’s, it can be expressed in terms of e, f , g, and h.
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The explicit formula is5

J =
4(2f3 − 9efg + 27g2 + 27e2h − 72fh)2

108 · ∆ + 1

5If α1, α2, α3 are all nonzero, then z2 = (x − α1)(x − α2)(x − α3) can be rewritten as

( z
x2 )2 = α1α2α3

x
· ( 1

α1
− 1

x
)( 1

α2
− 1

x
)( 1

α3
− 1

x
) which is v2 = (u − 1

α1
)(u − 1

α2
)(u − 1

α3
) · u where

u = 1
x

and v = iz
x2√α1α2α3

. In this case, four of the roots of K(x) are the roots of x4 − 2
φ

x2 + 1

where φ =
1

α1
·0+ 1

α2
1

α3
− 1

α1
1

α2
− 1

α3
·0

1
α1

1
α2

+ 1
α2

1
α3

+ 1
α3

·0+0· 1
α1

−2 1
α1

1
α3

−2 1
α2

·0 = α1−α3
α3+α1−2α2

. The six permutations of

the α’s all give values of φ for which the same is true, which accounts for all 24 roots of K(x)

and shows that K(x) =
∏6

i=1(x4 − 2
φi

x2 + 1) where the φi are the six rational functions of α1,

α2, α3 given by such permutations. Since interchange of α1 and α3 changes the sign of φ, one
has in fact K(x) =

∏3
i=1(x4 − 2

φi
x2 + 1) ·

∏3
i=1(x4 + 2

φi
x2 + 1) where φ1, φ2, φ3 are the three

versions of φ obtained by cyclic permutations of α1, α2, α3. The first factor of this product is
x12 −σ1x10 +(3+σ2)x8 +(−σ3−2σ1)x6 +(3+σ2)x4 −σ1x2 +1, where the σi are the elementary

symmetric polynomials in 2
φ1

, 2
φ2

, and 2
φ3

.

By straightforward computation, σi = Pi
(α1−α3)(α2−α1)(α3−α2)

where P1 = 4(α3
1 + α3

2 + α3
3) +

24α1α2α3−6·(all αiα
2
j ), P2 = 36(α1α2

2+α2α2
3+α3α2

1−α2
1α2−α2

2α3−α2
3α1), and P3 = −16(α3

1+

α3
2+α3

3)−96α1α2α3+24·(all αiα
2
j ) where (all αiα

2
j ) = α1α2

2+α1α2
3+α2α2

1+α2α2
3+α3α2

1+α3α2
2.

Therefore, σ1 = 2 · 2S3
1−9S1S2+27S3

(α1−α3)(α3−α2)(α2−α1)
, σ2 = −36, and σ3 = −4σ1, where S1, S2, and S3 are

the elementary symmetric polynomials in α1, α2, and α3, and the product of the first three factors
of K(x) is x12−σ1x10+(−33)x8+(2σ1)x6+(−33)x4−σ1x2+1 = (x12−33x8−33x4+1)−σ1(x10−
2x6 + x2) = (x4 + 1)(x8 − 34x4 + 1)−σ1x2(x4 − 1)2, while the product of the last three factors is
the same with the sign of σ1 reversed. Therefore, K(x) for the curve z2 = (x−α1)(x−α2)(x−α3)
is given by the explicit formula (x4 +1)2(x8 −34x4 +1)2−σ2

1x4(x4 −1)4, provided α1, α2, α3 are
all nonzero. The identity (x8 +14x4 +1)3 −108(x5−x)4 = (x4 +1)2(x8 −34x4 +1)2 then implies
K(x) = (x8+14x4+1)3−(σ2

1 +108)(x5−x)4, which is to say that C = σ2
1 +108. The denominator

of σ2
1 is the discriminant of the cubic, and the numerator is the square of 2(−2E3 + 9EF − 27G)

when the cubic is x3 +Ex2 +Fx+G = (x−α1)(x−α2)(x−α3). Thus, J = 4(2E3−9EF+27G)2

108·∆ +1

for the curve z2 = x3 + Ex2 + Fx2 + G, provided G �= 0.
Changing x3 + Ex2 + Fx + G to (x + c)3 + E(x + c)2 + F (x + c) + G—that is, changing E to

3c + E, F to 3c2 + 2cE + F , and G to c3 + c2E + cF + G does not change the discriminant of
the cubic or J , so it must not change 4(2E3 − 9EF + 27G)2, at least not when G �= 0. But this
means that the polynomial 2(3c + E)3 − 9(3c + E)(3c2 + 2cE + F ) + 27(c3 + c2E + cF + G) is
independent of c. Therefore, the formula for J is valid even when G = 0.

Consider now a curve of the form z2 = x4 + ex3 + fx2 + gx + h. Assume first that 0 is a
root of the polynomial on the right, which is to say that h = 0. Let β1, β2, β3 be the other
three roots of this polynomial (which is assumed to have distinct roots). Since the given curve

is equivalent to ( z
x2 )2 = (1 − β1

x
)(1 − β2

x
)(1 − β3

x
) = −β1β2β3(

1
x
− 1

β1
)( 1

x
− 1

β2
)( 1

x
− 1

β3
), the

value of J for it is 4(2E3−9EF+27G)2

108·∆ + 1 where −E, F and −G are the elementary symmetric

functions in 1
β1

, 1
β2

, and 1
β3

and ∆ is the square of ( 1
β1

− 1
β2

)( 1
β1

− 1
β3

)( 1
β2

− 1
β3

). Multiplication of

numerator and denominator by (β1β2β3)6 gives the square of β1β2β3(β2 −β1)(β3 −β1)(β3 −β2),
which is the discriminant of x4 + ex3 + fx2 + gx, in the denominator; in the numerator, it gives
4(−2(β1β2 + β1β3 + β2β3)3 + 9(β1β2 + β1β3 + β2β3)(β1 + β2 + β3)(β1β2β3) − 27β2

1β2
2β2

3)2 =
4(2f3 − 9efg + 27g2)2. The given formula for J follows in the case h = 0.

The value of J for the curve z2 = (x − α1)(x − α2)(x − α3)(x − α4) is its value for z2 =
(x+α4 −α1)(x+α4 −α2)(x+α4 −α3)x, which is given by the above formula with β1 = α1 −α4,
β2 = α2 − α4, and β3 = α3 − α4. Since the discriminants of these two quartic polynomials

are the same, the formula for J takes the form 4P2

108·∆ + 1 where P is a polynomial in e, f , g,

and h. Because P is symmetric of degree 6 in the α’s and is 2f3 − 9efg + 27g2 when h = 0,
it is 2f3 − 9efg + 27g2 + re2h + sfh for some integers r and s. Because the coefficient of c in
2f3 − 9efg + 27g2 + re2h + sfh when e is changed to 4c + e, f is changed to 6c2 + 3ce + f , g is
changed to 4c3 + 3c2e + 2cf + g, and h is changed to c4 + c3e + c2f + cg + h is 72fg − 27e2g +
r(8eh + e2g) + s(3eh + fg), and because these changes must leave the polynomial unchanged, the
values r = 27 and s = −72 follow.
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where ∆ is the discriminant of x4 + ex3 + fx2 + gx + h, or, for an elliptic curve of
the form z2 = x3 + Ex2 + Fx + G, the formula is

J =
4(2E3 − 9EF + 27G)2

108 · ∆ + 1

where ∆ is the discriminant of x3 + Ex2 + Fx + G. For a curve in the commonly
used canonical form Q2 = 4P 3 − g2P − g3, this formula becomes J = g3

2
g3
2−27g2

3
.

The proposition implies that elliptic curves with the same J-invariant are equiv-
alent. Theorem 11.1 below states that this sufficient condition is also necessary,
except that the J-invariants of different elliptic function fields need not be in the
same algebraic number field, so they may not be directly comparable unless (as is
the case in most of the examples that are studied) they are rational.

7. Rational points and places

A rational point of the field of rational functions on x2+y2 = a2+a2x2y2 is a pair
of constants6 (x1, y1) of the field for which x2

1 + y2
1 = a2 + a2x2

1y
2
1 . As constants

are adjoined to the function field, more rational points may be created, but the
J-invariant and the equivalence class of the field are unchanged.

Not just x and y, but all elements of the function field have “values” at a rational
point—although the “value” might be ∞—an observation which leads to the more
intrinsic description of the rational point as a place on the curve in the following
way.

Assume for the moment that x1 is a constant for which the equation x2
1 + y2 =

a2 + a2x2
1y

2 has two distinct roots, which is to say x1 �= ±a, x1 �= ± 1
a . For such

values of x1, the Newton polygon algorithm7 generates two solutions y of x2 +y2 =
a2+a2x2y2 in powers of x−x1, one for each possible value ±y1 of the constant term
of y (which may need to be adjoined). In other words, it produces for each such point
(x1, y1) on the curve (provided x1 �= ±a, ± 1

a and provided a root y1 of x2
1 + y2 =

a2 +a2x2
1y

2 is adjoined if necessary) a formal power series y = y1 + c1t+ c2t
2 + · · · ,

which, when paired with the terminating power series x = x1 + t, gives a pair of
formal power series (x, y) in t for which x2 + y2 = a2 + a2x2y2. The coefficients x1,
y1, c1, c2, . . . of these series are constants of the function field (after y1 is adjoined,
if necessary) because, in the terminology of [4], the truncated solution y = y1 of
x2

1 + y2 = a2 + a2x2
1y

2 is unambiguous, so application of the algorithm generates a
formal power series solution y = y1+c1(x−x1)+c2(x−x1)2+ · · · without requiring
the adjunction of constants. But since all elements of the function field are rational
functions of x and y, the two expansions x = x1 + t and y = y1 + c1t + c2t

2 + · · ·
imply expansions in powers of t of all elements of the function field provided a finite
number of terms in which the power of t is negative are allowed.8 Thus, (x1, y1)

6More correctly, such a point is “rational over the field of constants” K of the function field.
This is the natural meaning of “rational” when K is a part of the definition of the field as in
Section 4.

7See [4], where the construction assumes y is integral over x. A simple modification suffices to
make it applicable to x2 + y2 = a2 + a2x2y2.

8The needed expansions are elements in the field of quotients of the integral domain K[[t]] of
all formal power series in t with coefficients in K, a field which is often denoted K((t)). Because
the reciprocal of a power series ctk(1 + b1t + b2t2 + · · · ) is c−1t−k(1− (b1t + · · · ) + (b1t + · · · )2 −
(b1t + · · · )3 + · · · ), each nonzero element of K((t)) can be written in one and only one way in the
form tk(c0 + c1t + c2t2 + · · · ) where c0, c1, . . . are in K, c0 �= 0, and k is an integer, which is the
order of the element.
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determines a formal expansion for each element of the field and in particular assigns
an order to each nonzero field element at the point (x1, y1), namely, the exponent
of t in the first nonzero term of the expansion found in this way. Naturally, the field
element is said to “have a pole” at (x1, y1) if this order is negative, to “be finite”
at (x1, y1) if the order is nonnegative, and to “be zero” at (x1, y1) if the order is
positive. If the element is finite at (x1, y1), its “value” at (x1, y1) is the constant
term of its expansion, or, what is the same, the “value” is the constant which differs
from it by an element that is zero at the place.

When y1 �= ±a, ± 1
a , all field elements can be expanded in powers of s = y−y1 in

the analogous way and orders at (x1, y1) can be defined accordingly. These orders
coincide with the orders determined by expansions in the parameter t = x−x1 in all
cases in which both are defined, because the expansion of s = y − y1 in powers of t
has the form s = c1t+c2t

2+· · · , so t = b1(c1t+c2t
2+· · · )+b2(c1t+c2t

2+· · · )2+· · · ,
which implies b1c1 = 1, b1c2 + b2c

2
1 = 0, . . . , and in particular implies c1 �= 0, so

that substitution of s = c1t + · · · in an expansion dksk + dk+1s
k+1 + · · · (where

k may be negative) gives an expansion that begins dkck
1tk + · · · . Therefore, the

order of the element at (x1, y1) is k, whether t or s is used to determine it. More
generally, the Newton polygon algorithm can be used to expand all field elements in
powers of any local parameter at (x1, y1)—any element of the function field whose
order at (x1, y1) is 1—and the assignment of orders at (x1, y1) to elements of the
field is independent of the choice of the parameter.

As was just shown, the order of any element of the function field at (x1, y1) can
be found using the parameter y − y1 whenever y1 �= ±a, ± 1

a . In particular, this
method assigns orders to all field elements at the rational points (a, 0) and (−a, 0)
for which the parameter x − x1 cannot be used. (At these points, the Newton
polygon algorithm gives an expansion of y in powers of x1/2, but these expansions
will not be needed.)

Literally speaking, there are no rational points where x = ± 1
a , because ( 1

a)2 +
y2 = a2 + y2 has no solution y (by assumption, a4 �= 1). Similarly, there are no
rational points where y = ± 1

a . However, it is natural to regard the curve x2 + y2 =
a2 + a2x2y2 as having four9 “points at infinity”, namely, (± 1

a ,∞) and (∞,± 1
a ),

because division of the defining equation by x2y2 gives another equation of the same
form in which x is replaced by 1

x and y is replaced by 1
y , so that (x, y) = (± 1

a ,∞)
and (∞,± 1

a ) can be regarded as the rational points where ( 1
x , 1

y ) = (±a, 0) and
(0,±a), respectively. The places corresponding to these four points at infinity are
determined accordingly.

In summary, each rational point of x2 + y2 = a2 + a2x2y2 (the four points at
infinity included) gives rise to a place—a way of assigning orders to all elements of
the function field—that describes the point in a more coordinate-free way.

9If one “projectivizes” the curve x2 + y2 = a2 + a2x2y2 by writing its equation in the form
x2t2 + y2t2 = a2t4 + a2x2y2, it has only two points at infinity, namely, (t, x, y) = (0, 1, 0) and
(0, 0, 1). This discrepancy is noted in the discussion of the last entry of Gauss’s Tagebuch in [8],
where Gauss’s choice to count four points at infinity on x2 + y2 + x2y2 = 1 is contrasted with the
count of only two given by projectivization. I believe that Gauss’s formula (2.1) and the symmetry

(x, y) → ( i
x

, i
y
) of the curve make his count more convincing.
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8. Algebraic proof of the addition formula

Let X and Y be defined as in (3.1), except let x′ and y′ be replaced by x1 and
y1 to avoid the awkward notations (x′)2 and (y′)2. When the letter P is used to
abbreviate xx1yy1, multiplication of the desired equation X2 + Y 2 = a2 + a2X2Y 2

by a2(1 − P 2)2 puts it in the form (xy1 + yx1)2(1 − P )2 + (yy1 − xx1)2(1 + P )2 =
a4(1 − P 2)2 + (xy1 + yx1)2(yy1 − xx1)2. It is to be shown that this equation is a
consequence of the assumptions that x2+y2 = a2+a2x2y2 and x2

1+y2
1 = a2+a2x2

1y
2
1 .

In other words, it is to be shown that the polynomial ∆ defined by

(xy1 + yx1)2(1 − P )2 + (yy1 − xx1)2(1 + P )2

= (xy1 + yx1)2(yy1 − xx1)2 + a4(1 − P 2)2 + ∆
(8.1)

is a sum of multiples of R = x2 + y2 − a2 − a2x2y2 and R1 = x2
1 + y2

1 − a2 − a2x2
1y

2
1 .

The left-hand side of this equation can be rewritten (x2y2
1 +2P +y2x2

1)(1−2P +
P 2)+(y2y2

1−2P +x2x2
1)(1+2P +P 2). Combine the parts that contain 1+P 2 in the

second factors on the one hand and the parts that contain 2P in the second factors
on the other to find (x2y2

1 + 2P + y2x2
1 + y2y2

1 − 2P + x2x2
1)(1 + P 2) + (−x2y2

1 −
2P − y2x2

1 + y2y2
1 − 2P + x2x2

1)(2P ). The first term is (x2 + y2)(x2
1 + y2

1)(1 + P 2)
and the second is ((x2 − y2)(x2

1 − y2
1) − 4P )(2P ) = 2P (x2 − y2)(x2

1 − y2
1) − 8P 2.

On the right-hand side, the first term (xy1 + yx1)2(yy1 − xx1)2 can be written
(x2y2

1+y2x2
1+2P )(y2y2

1+x2x2
1−2P ) = (x2y2

1+y2x2
1)(y2y2

1+x2x2
1)+2P (y2y2

1+x2x2
1−

x2y2
1−y2x2

1)−4P 2 = x2y2y4
1+x4x2

1y
2
1+y4x2

1y
2
1+x2y2x4

1+2P (x2−y2)(x2
1−y2

1)−4P 2.
Therefore, subtraction of 2P (x2−y2)(x2

1−y2
1)−8P 2 from both sides of (8.1) results

in

(x2 + y2)(x2
1 + y2

1)(1 + P 2)

= x2y2y4
1 + x4x2

1y
2
1 + y4x2

1y
2
1 + x2y2x4

1 + 4P 2 + a4(1 − P 2)2 + ∆

= x2y2(y4
1 + 2x2

1y
2
1 + x4

1) + x2
1y

2
1(y4 + 2x2y2 + x4) + a4(1 − P 2)2 + ∆

= x2y2(y2
1 + x2

1)
2 + x2

1y
2
1(y2 + x2)2 + a4(1 − P 2)2 + ∆.

(8.2)

When (1 − P 2)2 is rewritten as

(1 − P 2)2 = (1 + P 2)2 − 4P 2

= (1 + P 2)(1 + x2y2 + x2
1y

2
1 + P 2) − (1 + P 2)(x2y2 + x2

1y
2
1) − 4P 2

= (1 + P 2)(1 + x2y2)(1 + x2
1y

2
1)

− x2y2 − x2
1y

2
1 − 2P 2 − 2P 2 − x2y2P 2 − x2

1y
2
1P

2

= (1 + P 2)(1 + x2y2)(1 + x2
1y

2
1)

− x2y2(1 + 2x2
1y

2
1 + x4

1y
4
1) − x2

1y
2
1(1 + 2x2y2 + x4y4)

= (1 + P 2)(1 + x2y2)(1 + x2
1y

2
1) − x2y2(1 + x2

1y
2
1)

2 − x2
1y

2
1(1 + x2y2)2

(8.3)

equation (8.2) shows ∆ is

(
(x2 + y2)(x2

1 + y2
1) − (a2 + a2x2y2)(a2 + a2x2

1y
2
1)

)
(1 + P 2)

+ x2y2
(
(a2 + a2x2

1y
2
1)2 − (x2

1 + y2
1)2

)
+ x2

1y
2
1

(
(a2 + a2x2y2)2 − (x2 + y2)2

)
,

(8.4)
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thereby showing that x2+y2 = a2+a2x2y2 and x2
1+y2

1 = a2+a2x2
1y

2
1 imply ∆ = 0.

The needed fact can be expressed entirely in terms of polynomial algebra in the
following way. Since RR1 = (x2 + y2)(x2

1 + y2
1) − (x2 + y2)(a2 + a2x2

1y
2
1) − (x2

1 +
y2
1)(a2+a2x2y2)+(a2+a2x2y2)(a2+a2x2

1y
2
1), the difference (x2+y2)(x2

1+y2
1)−(a2+

a2x2y2)(a2 +a2x2
1y

2
1) can be written RR1 +(x2 + y2)(a2 +a2x2

1y
2
1)+ (x2

1 + y2
1)(a2 +

a2x2y2)− 2(a2 +a2x2y2)(a2 +a2x2
1y

2
1) = RR1 +R(a2 +a2x2

1y
2
1)+R1(a2 +a2x2y2),

giving the explicit equation

(8.5) X2 + Y 2 = a2 + a2X2Y 2 +
∆

a2(1 − x2x2
1y

2y2
1)2

where ∆ is the polynomial in x, x1, y, and y1 given by

(RR1+R(a2 + a2x2
1y

2
1) + R1(a2 + a2x2y2))(1 + P 2)

− x2y2R1(a2 + a2x2
1y

2
1 + x2

1 + y2
1) − x2

1y
2
1R(a2 + a2x2y2 + x2 + y2)

(8.6)

in which R = x2 + y2 − a2x2y2 and R1 = x2
1 + y2

1 − a2 − a2x2
1y

2
1 . Equation (8.5)

proves:

Theorem 8.1. Let K be an algebraic number field and let a be an element of
K for which a5 �= a. To the field K(x, x1) of rational functions in x and x1

with coefficients in K, adjoin square roots z and z1 of (a2 − x2)(1 − a2x2) and
(a2 − x2

1)(1− a2x2
1), respectively. The formulas y = z

1−a2x2 and y1 = z1
1−a2x2

1
define

elements of this extension field which generate the extension over K(x, x1) and
which satisfy x2 + y2 = a2 + a2x2y2 and x2

1 + y2
1 = a2 + a2x2

1y
2
1. The formulas

(3.1) (with x1 and y1 in place of x′ and y′) determine elements X and Y of this
extension field that satisfy X2 + Y 2 = a2 + a2X2Y 2.

The function field constructed in the statement of this theorem is the field of
rational functions on an algebraic surface—namely, the product of two copies of
the algebraic curve x2 + y2 = a2 + a2x2y2.

If, instead of x1 being an indeterminate and y1 being an algebraic element ad-
joined to the field K(x1), both x1 and y1 are elements of K for which x2

1 + y2
1 =

a2 + a2x2
1y

2
1 , formula (3.1) determines a pair of elements X and Y in the field of

rational functions on x2 + y2 = a2 + a2x2y2 with coefficients in K that satisfy
X2 + Y 2 = a2 + a2X2Y 2. Therefore, it determines an automorphism of this field
of rational functions whose restriction to K is the identity.

Since places are intrinsic to the curve, an automorphism of the curve induces
a permutation of the rational points on the curve. Therefore, the automorphism
of the curve determined by a rational point (x1, y1) as in the preceding paragraph
determines a permutation of the rational points on the curve. Specifically, this
permutation of the rational points is the one that carries (x2, y2) to the rational
point whose (x, y)–coordinates are ( 1

a · x1y2+y1x2
1+x1x2y1y2

, 1
a · y1y2−x1x2

1−x1x2y1y2
), provided none

of the four coordinates is ∞, because these coordinates are the constant terms of
the series expansions obtained by setting x = x2 + · · · and y = y2 + · · · (where, in
both cases, all omitted terms contain t) in the rational functions 1

a · xy1+yx1
1+xx1yy1

and
1
a · yy1−xx1

1−xx1y1
. (This formula can also be interpreted in cases in which a coordinate is

∞. For example, if x1 = ∞, then y1 = ± 1
a ; if y1 = 1

a , then the addition formula
should be interpreted to mean ( 1

a · y2
x2· 1

a ·y2
, 1

a · −x2
−x2· 1a ·y2

) = ( 1
x2

, 1
y2

) because one
ignores terms in the numerator and denominator that do not contain x1 = ∞.)
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In this way, one can define a binary operation on the rational points on the
curve x2 + y2 = a2 + a2x2y2. Clearly it is commutative, the rational point (0, a)
is an identity, and any rational point (x1, y1) has the inverse (−x1, y1) (even the
rational points (∞,± 1

a ) and (± 1
a ,∞)). To complete the proof that the rational

points are given a group structure by the addition formula, it remains only to
show that the binary operation is associative. The associativity of the operation is
clearly indicated by the fact that the operation expresses the automorphism of the
curve that carries the place (0, a) to the place (x1, y1), because the composition of
automorphisms is associative; however, the proof must also make use of the fact that
these automorphisms preserve the differential dx

y(1−a2x2) , because (x, y) �→ (−x, y)
is an automorphism of the curve that leaves (x, y) = (0, a) fixed, so automorphisms
are not determined by their effects on one point without this further condition.
Associativity is proved in the next section.

That the group law (3.1) on the rational points of an elliptic curve x2 + y2 =
a2 + a2x2y2 coincides with the group law on this curve as defined in the usual way
by the chord-and-tangent construction will be proved in Section 10.

9. Euler’s integration

Theorem 9.1. The rational functions X and Y defined by (3.1) satisfy the differ-
ential equation

dX

Y (1 − a2X2)
=

dx

y(1 − a2x2)
+

dx1

y1(1 − a2x2
1)

.

If one treats x1 and y1 as constants, the map (x, y) → (X, Y ) is a morphism
of function fields, and the problem is to show that the pullback of dX

Y (1−a2X2) is
dx

y(1−a2x2) . The same equation with constant (x, y) and variable (x1, y1) then will
follow by symmetry, and the full equation of the theorem is simply the sum of the
two equations obtained in this way.

The fact that an elliptic curve has genus one implies that there is just a one-
dimensional space of holomorphic differentials. A holomorphic differential is one
that has no poles, so the pullback of a holomorphic differential is holomorphic, a
condition that determines the pullback of dX

Y (1−a2X2) up to a constant multiple.

When x1 and y1 are fixed, one has dX
dx = (y1+x1

dy
dx )(1+xx1yy1)−x1y1(y+x dy

dx )(xy1+yx1)

a(1+xx1yy1)2

which gives dX
dx = y1(1−a2x2

1)
a when (x, y) = (0, a). (Differentiation of x2 + y2 =

a2 + a2x2y2 gives dy
dx = −x(1−a2y2)

y(1−a2x2) , which shows that dy
dx = 0 at this point.) Thus,

the pullback of dX
Y (1−a2X2) agrees with dx

y(1−a2x2) at that point, so they must be
equal.

Proof. The argument just given explains the idea that underlies the theorem. The
proof, on the other hand, is probably more convincing if it is treated as an exercise
in differential calculus. The calculation will make use of the formula

(1 − x2
1x

2)(1 − y2
1x2)

1 − P 2
=

1 − (x2
1 + y2

1)x2 + x2
1y

2
1x

4

1 − P 2
=

1 − (a2 + a2x2
1y

2
1)x2 + x2

1y
2
1x4

1 − P 2

=
1 − a2x2 + x2

1y
2
1x2(x2 − a2)

1 − P 2
=

1 − a2x2 + x2
1y

2
1x2(−y2 + a2x2y2)

1 − P 2
= 1 − a2x2

(9.1)
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and the formula (1−y2
1y2)(1−x2

1y2)
1−P 2 = 1−a2y2 that follows from this one by symmetry.

The above formula dX
dx = (y1+x1

dy
dx )(1+P )−x1y1(y+x dy

dx )(xy1+yx1)

a(1+P )2 can be transformed
to

y1 + x1
dy
dx − x1x

2y2
1

dy
dx − y1x

2
1y

2

a(1 + P )2
=

(y1 + x1
dy
dx − x1x

2y2
1

dy
dx − y1x

2
1y

2)y(1 − a2y2)
a(1 + P )2y(1 − a2y2)

=
(y1 − y1x

2
1y

2)y(1 − a2x2) + (x1 − x1x
2y2

1) dy
dxy(1 − a2x2)

a(1 + P )2y(1 − a2y2)

=
y1y(1 − a2x2)(1 − x2

1y
2) − x1x(1 − x2y2

1)(1 − a2y2)
a(1 + P )2y(1 − a2x2)

=
y1y(1 − x2

1x
2)(1 − y2

1x2)(1 − x2
1y

2) − x1x(1 − x2y2
1)(1 − y2

1y2)(1 − x2
1y

2)
(1 − P 2)a(1 + P )2y(1 − a2x2)

=
(1 − y2

1x2)(1 − x2
1y

2)(y1y(1 − x2
1x

2) − x1x(1 − y2
1y2))

(1 − P )a(1 + P )3y(1 − a2x2)

=
(1 − y2

1x2 − x2
1y

2 + P 2)(y1y − x1xP − x1x + y1yP )
(1 − P )a(1 + P )3y(1 − a2x2)

=
((1 + P )2 − (y1x + x1y)2)(y1y − x1x)(1 + P )

(1 − P )a(1 + P )3y(1 − a2x2)
=

(1 − a2X2)Y
y(1 − a2x2)

.

(9.2)

Thus dX
Y (1−a2X2) = dx

y(1−a2x2) , as was to be shown. �

The theorem implies that X is an integral of dx1
y1(1−a2x2

1)
+ dx2

y2(1−a2x2
2)

= 0 in
the sense Abel intended in the statement quoted in Section 1—that is, the curves
X = const. are curves along which the differential is zero. Because dY

X(1−a2Y 2) =
−dX

Y (1−a2X2) , Y is also an integral, so (X, Y ) can be interpreted as a function from the
direct product of the curve with itself to the curve—the group operation—whose
level curves integrate dx1

y1(1−a2x2
1)

+ dx2
y2(1−a2x2

2)
= 0. When y(1−a2x2) is rewritten as√

a2x4 − (a4 + 1)x2 + a2, this differential equation is in Abel’s form (1.1). In fact,
since Section 5 shows that every elliptic curve is equivalent to one in this form,
every differential equation in Abel’s form is integrated in this way, provided only
that the fourth degree polynomial under the radical sign has distinct roots (and
that its coefficients are algebraic numbers).

The associative law for the composition (3.1) is a consequence of Theorem 9.1 in
the following way. Let (X1, Y1) be the composition of (x1, y1) and (x2, y2) according
to this formula, and let (X1,Y1) be the composition of (X1, Y1) and (x3, y3). The
other way of composing (x1, y1), (x2, y2), and (x3, y3) is to let (X2, Y2) be the
composition of (x2, y2) and (x3, y3) and (X2,Y2) be the composition of (x1, y1) and
(X2, Y2). It is to be shown that X1 = X2 and Y1 = Y2.

The four “functions” X1, X2, Y1, and Y2 are naturally regarded as rational
functions on the 3-dimensional algebraic surface that is the direct product of the
curve x2 + y2 = a2 + a2x2y2 with itself three times, which is the field K(x1, x2, x3)
of rational functions in x1, x2, and x3 with coefficients in K to which are adjoined
the square roots zi of a2x4

i − (a4 + 1)x2 + a2 for i = 1, 2, and 3, a field extension
of degree 8 in which every element has a unique representation as a polynomial of
degree less than 2 in z1, z2, and z3 whose coefficients are in K(x1, x2, x3). Two
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applications of Theorem 9.1 imply
dX1

Y1(1 − a2X 2
1 )

=
dX1

Y1(1 − a2X2
1 )

+
dx3

y3(1 − a2x2
3)

=
dx1

y1(1 − a2x2
1)

+
dx2

y2(1 − a2x2
2)

+
dx3

y3(1 − a2x2
3)

.

(9.3)

In the same way
dX2

Y2(1 − a2X 2
2 )

=
dx1

y1(1 − a2x2
1)

+
dx2

y2(1 − a2x2
2)

+
dx3

y3(1 − a2x2
3)

.

Therefore, the pairs (X1,Y1) and (X2,Y2) integrate the same differential, both
satisfy X 2 + Y2 = a2 + a2X 2Y2, and both are (0, a) when (x1, y1) = (x2, y2) =
(x3, y3) = (0, a).

Thus, when all “functions”—elements of the field of rational functions on the
3-dimensional surface—are expressed as polynomials of degree less than 2 in z1, z2,
and z3 whose coefficients are in K(x1, x2, x3), the pairs (X1,Y1) and (X2,Y2) have
the same values when x1 = x2 = x3 = 0 and have the same partial derivatives with
respect to x1, x2, and x3 at all points. Therefore, they are identical, as was to be
shown.

10. Algebraic variations

The construction of Abel mentioned in Section 1 that initiated the study of
curves of higher genus can be described in a very heuristic way as follows.10 Let a
set of N points on a planar curve χ(x, y) = 0 be given, where χ is a polynomial with
integer coefficients. To construct an “algebraic variation” of the given points along
χ = 0, choose an auxiliary curve θ(x, y) = 0 that contains a large number of variable
coefficients. Choose values for the variable coefficients of θ that make θ(x, y) = 0 at
all of the N given points, so that χ = 0 and θ = 0 intersect in the given N points.
Because θ has many coefficients, it is of high degree, so θ = 0 will intersect χ = 0
in many points other than the required N . Let these other intersection points be
called the extraneous intersection points. When the parameters in θ are allowed
to vary in such a way that θ = 0 continues to intersect χ = 0 in the extraneous
intersection points, the motion of the original N points of intersection along χ = 0
is an algebraic variation of them.

This very general (heuristic) construction generalizes the addition operation on a
nonsingular cubic in the following way. Let χ(x, y) = 0 be a nonsingular cubic (for
example, y2−x3−x = 0) and let P and Q be two given points on χ(x, y) = 0. Choose
the coefficients a, b, and c of θ(x, y) = ax + by + c to make the line θ(x, y) = 0 pass
through P and Q. Since χ(x, y) is cubic, the line θ(x, y) = 0 intersects χ(x, y) = 0 in
a third, extraneous, point; call it R. The algebraic variations of the pair (P, Q) are
the pairs of points (P,Q) in which lines that pass through R intersect χ(x, y) = 0.

In terms of the addition operation on χ(x, y) = 0, the algebraic variations (P,Q)
of (P, Q) are described by the formula

(10.1) P + Q = P + Q

because the “sum” of P and Q depends only on R.

10See the Introduction to [2]. My book [4] describes the construction in Essay 4.1. See also
the Historical Sketch that is an appendix to [12].
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Abel’s great realization was that the number of constraints satisfied by the alge-
braic variations of N points along a curve depends only on the curve. For the circle
x2 + y2 − 1 = 0 there are no constraints—a set of N points on the circle can be
varied in all possible ways along the circle—but for a nonsingular cubic there is a
single constraint which in the case N = 2 is given by (10.1). For arbitrary N it was
shown in Essay 4.6 of [4] that for an elliptic curve z2 = f(x) the single constraint
is described by the differential equation

(10.2)
dx1

z1
+

dx2

z2
+ · · · + dxN

zN
= 0,

where (x1, z1), (x2, z2), . . . , (xN , zN ) are the N given points on z2 = f(x) and dxi

is the variation in the x-coordinate of the ith point. More generally, for a curve
of genus g the algebraic variations are the variations that satisfy the g linearly
independent differential equations determined by the holomorphic differentials.

The operation of addition on an elliptic curve “integrates” (10.2) for all N in the
same way that it integrates this equation when N = 2. Construct an equivalence
between the given elliptic curve z2 = f(x) and an elliptic curve in the normal form
x2 +y2 = a2 +a2x2y2. Let (x1, y1), (x2, y2), . . . , (xN , yN ) be the N given points in
this new coordinate system; the composition of all N points using the addition for-
mula (3.1) gives two explicit rational functions X and Y of x1, y1, x2, y2, . . . , xN , yN

with the property that the level surfaces of X or Y or any nonconstant rational
function of X and Y , which are hypersurfaces of codimension 1 in the direct prod-
uct of the curve with itself N times, are the N -tuples of points that can be reached
from one another by algebraic variations.

In short, the condition X = const. gives an explicit algebraic description of the
algebraic variations of the N given points on the curve.

11. Equivalent curves have the same J-invariant

Theorem 11.1. Let Ka and Kb be algebraic number fields containing elements a
and b, respectively, for which a5 �= a and b5 �= b, and for which the elliptic function
fields determined by x2 + y2 = a2 + a2x2y2 and u2 + v2 = b2 + b2u2v2 over Ka and
Kb, respectively, are equivalent in the sense of Section 4. Then the J-invariants of
these two function fields are conjugate algebraic numbers in the sense that they are
roots of the same irreducible polynomial with integer coefficients.

Proof. The assumption of equivalence implies a third algebraic number field K and
embeddings of Ka and Kb in K for which the function fields over K determined by
the equations x2+y2 = a2

1+a2
1x

2y2 and u2+v2 = b2
1+b2

1u
2v2 are isomorphic, where

a1 and b1 are the images in K of a and b under the respective embeddings. An
isomorphism of function fields implies an isomorphism of their fields of constants, so,
at the cost of replacing b1 with one of its conjugates under the Galois group of K over
the rationals, one can assume that a and b are in K and that x2 +y2 = a2 +a2x2y2

and u2 + v2 = b2 + b2u2v2 define function fields over K that are isomorphic under
an isomorphism that is the identity on K. It will be shown that with these stronger
assumptions the two J-invariants are equal.

Such an isomorphism of two elliptic function fields over K that is the identity
on K implies a one-to-one correspondence between the rational points on the two
curves, because values x1 and y1 of x and y determine values (possibly ∞) for
all elements of the function field and in particular determine values u1 and v1



A NORMAL FORM FOR ELLIPTIC CURVES 409

of u and v, and conversely. One can assume without loss of generality that the
given isomorphism carries the rational point (x, y) = (0, a) to the rational point
(u, v) = (0, b), because if (x, y) = (x1, y1) is the rational point that corresponds
to (u, v) = (0, b) under the given automorphism, then the addition formula gives
an automorphism of the field that carries (x, y) = (x1, y1) to (x, y) = (0, a) and
therefore gives new xy-coordinates in which the rational points (x, y) = (0, a) and
(u, v) = (0, b) correspond under the isomorphism.

With this stronger assumption, the rational point (u, v) = (0,−b) corresponds
under the isomorphism to one of the three rational points (x, y) = (0,−a), (∞, 1

a ),
or (∞,− 1

a ). The reason is that the four points (x, y) = (0,±a), (∞,± 1
a ) are the

preimage of the identity (x, y) = (0, a) under the doubling map, and this map is
intrinsic to the curve once the identity (x, y) = (0, a) is specified. That is, the
pair of field elements (X, Y ) = ( 2xy

a(1+x2y2) ,
y2−x2

a(1−x2y2) ) given by the addition formula
when the two input pairs are the same generate a subfield—the elements that can
be expressed rationally in terms of X and Y —that is isomorphic to the whole field
but has index 4 in it. This subfield is intrinsic in the sense that it must correspond
under the isomorphism to the subfield of the function field of u2 + v2 = b2 + b2u2v2

generated by the functions (U, V ) = ( 2uv
b(1+u2v2) ,

v2−u2

b(1−u2v2) ) because an expression
of a rational function of x and y as a rational function of X and Y corresponds
under the isomorphism to an expression of a rational function of u and v as a
rational function of U and V . This subfield has index 4 because when x2 is written
as a2−y2

1−a2y2 and denominators are cleared, the equation aY (1 − x2y2) = y2 − x2

becomes an equation of degree 4 in y with coefficients in the subfield; each root y
gives a unique value of x by virtue of aX(1 + x2y2) = 2xy. Each rational point on
x2 +y2 = a2 +a2x2y2 implies values in K of X and Y , and this mapping of rational
points is 4-to-1 because the values of X and Y at (x, y) = (x1, y1) are the same
as they are at (−x1,−y1) and (± 1

x1
,± 1

y1
). In particular, the four points whose

doubles are (X, Y ) = (0, a) are as stated above and the desired conclusion follows.
One can assume without loss of generality that the given isomorphism between

the xy-curve and the uv-curve carries (u, v) = (0,−b) to (x, y) = (0,−a) as well as
(u, v) = (0, b) to (x, y) = (0, a). As was just shown, if it does not carry (u, v) =
(0,−b) to (x, y) = (0,−a), it must carry it to one of (x, y) = (∞,± 1

a ). Therefore,
it will suffice to show that there is an isomorphism of the xy-curve with another
curve of the same form X2 +Y 2 = A2 +A2X2Y 2 that carries either of these points
to (X, Y ) = (0,−A) while carrying (x, y) = (0, a) to (X, Y ) = (0, A).

The fractional linear transformation λ(z) �→ 1+iz
1−iz has order 3. (As was noted in

the proof of Proposition 6.1, it corresponds to the permutation 0 �→ 1 �→ i �→ 0 and
∞ �→ −1 �→ −i �→ ∞ of the “faces of the cube”.) When A is defined to be λ(a)
(an element of K) and Y is defined to be λ(y) (an element of the function field of
x2 + y2 = a2 + a2x2y2 over K), then

A2 − Y 2

1 − A2Y 2
=

(y − a)(ay + 1)
(y + a)(1 − ay)

,

as one can find by direct computation. This element of the function field of x2+y2 =
a2 + a2x2y2 is a square, namely,

(y − a)(ay + 1)
(y + a)(1 − ay)

· (ay + 1)(y + a)
(ay + 1)(y + a)

=
(ay + 1)2(y2 − a2)
(y + a)2(1 − a2y2)

=
(ay + 1

y + a
· ix

)2
.
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Thus, setting X = ix· ay+1
y+a describes a presentation of the function field of x2+y2 =

a2 + a2x2y2 over K as the function field of X2 + Y 2 = A2 + A2X2Y 2 over K. At
the point (x, y) = (0, a), Y has the value λ(a) = A, so this point corresponds to
(X, Y ) = (0, A). At the point (x, y) = (∞,− 1

a ), Y = λ(y) has the value λ(− 1
a ) =

1− i
a

1+ i
a

= ia+1
ia−1 = −λ(a) = −A, so (x, y) = (∞,− 1

a ) corresponds to (X, Y ) = (0,−A).

At (x, y) = (∞, 1
a ), Y has the value λ( 1

a ) = − 1
A , so setting A = λ(A), Y = λ(Y ),

and X = iX · AY +1
Y +A gives a presentation of the field as a field of the same form

in which (x, y) = (∞, 1
a ) corresponds to (X ,Y) = (0,−A) and (x, y) = (0, a)

corresponds to (X ,Y) = (0,A).
Finally, when the given isomorphism of u2 + v2 = b2 + b2u2v2 with x2 + y2 =

a2 + a2x2y2 carries (u, v) = (0, b) to (x, y) = (0, a) and (u, v) = (0,−b) to (x, y) =
(0,−a), it carries points whose doubles are (u, v) = (0,−b) to points whose doubles
are (x, y) = (0,−a). But these points are (u, v) = (±b, 0), (±1

b ,∞) and (x, y) =
(±a, 0), (± 1

a ,∞), respectively, as is easily checked. Therefore, b must have one of
the values ±a, ± 1

a , all of which are in the list (6.1), so the J-invariants are equal,
as was to be shown.

12. The holomorphic parameter at the origin

The transcendental function x(t) defined by t =
∫ x(t)

0
dx√

(a2−x2)(1−a2x2)
will be

used in Part III to parameterize the curve x2 + y2 = a2 + a2x2y2 using complex
analytic functions. It can be treated algebraically by developing it as a formal power
series x(t) = b1t + b2t

2 + b3t
3 + · · · with coefficients in K that can be determined

in the following way.
At the place (x, y) = (0, a), all elements of the function field over K defined

by x2 + y2 = a2 + a2x2y2 can be expanded in powers of x (possibly with a finite
number of negative powers). They can also be expanded in powers of t for any
formal power series t in x of order 1 at (0, a). Let t be defined implicitly by an
equation x = b1t + b2t

2 + · · · in which the coefficients b1 �= 0, b2, b3, . . . are to
be determined. Once values are given to the bi, substitution of the expansion of x
in powers of t in the expansion of y in powers of x will give an expansion y, and
therefore expansions of all elements of the function field, in powers of t.

When the integral that defines x(t) is differentiated with respect to t, one finds
1 = x′(t) 1√

(a2−x2)(1−a2x2)
= x′(t)

y(1−a2x2) or, more simply, x′(t) = y(1 − a2x2). The

equations

(12.1) y2 =
a2 − x2

1 − a2x2
= (a2 − x2)(1 + a2x2 + a4x4 + a6x6 + · · · )

and

(12.2)
dx

dt
= y(1 − a2x2)

can be used to find the desired expansion x = b1t+b2t
2 +b3t

3 + · · · in the following
way.

Heuristic considerations suggest that the expansion of x in powers of t will con-
tain only odd powers of t and the expansion of y only even powers, but for pur-
poses of constructing an expansion of x in powers of t with the desired property
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dx
dt = y(1 − a2x2), one can simply stipulate that the expansions have the form

x = b1t + b3t
3 + b5t

5 + b7t
7 + · · · ,

y = a + c2t
2 + c4t

4 + c6t
6 + · · ·

(12.3)

and note that (12.1) and (12.2) suffice to determine

c0, b1, c2, b3, c4, b5, c6, b7, c8, . . .

in succession, given c0 = a. Specificially, when these coefficients are known up to,
but not including, b2n−1, then y is known mod t2n (it contains no term in t2n−1 and
the previous terms are known) and x2 is also known mod t2n (the first unknown
term in the expansion of x2 is 2b1b2n−1t

2n), so the left side of (12.2) is known
mod t2n, which determines the coefficient (2n − 1)b2n−1 of t2n−2 in the right side,
thereby determining b2n−1. Then x2 is known mod t2n+2 (it has no term in t2n+1

and the previous terms are known), so the right side of (12.1) is known mod t2n+2,
which is sufficient to determine the coefficient 2ac2n of t2n on the right, thereby
determining c2n.

The coefficients can be described more fully by saying that they have the form
b2n+1 = aβ2n+1

(2n+1)! and c2n = aγ2n

(2n)! where β2n+1 and γ2n are polynomials in a4 with
integer coefficients. With the understanding that γ0 = 1, they are given by the
formulas

β2n+1 = γ2n − a4(
∑ (2n)!

i!j!k!
γiβjβk)

where the sum is over all triples of nonnegative integers (i, j, k) for which i+j+k =
2n, i is even, and j and k are odd, and

γ2n = −β2n−1 + a4(
∑ (2n − 1)!

i!j!k!
βiγjγk)

where the sum is over all triples (i, j, k) in which i + j + k = 2n − 1, i is odd, and
j and k are even. The first few terms of the series are

x = at − a(a4 + 1)
6

t3 +
a(a8 + 14a4 + 1)

120
t5 + · · ·

and

y = a +
a(a4 − 1)

2
t2 +

a(5a8 − 6a4 + 1)
24

t4 + · · · .

�

Part III. The Theory of Elliptic Functions

13. Double periodicity

One of Abel’s main objectives was11 to extend the study of transcendental func-
tions [1] beyond the trigonometric and logarithmic functions. His treatise on elliptic
functions is devoted to the study of the function Φ(t) defined implicitly for t near

11See the introduction of [1] and the title of his Paris memoir [2].



412 HAROLD M. EDWARDS

zero by12

(13.1) t =
∫ Φ(t)

0

dx√
(1 − c2x2)(1 + e2x2)

where c2 and e2 are positive13 real constants. The integrand is real and positive for
0 ≤ x ≤ 1

c , so Φ(t) increases as t goes from 0 to
∫ 1

c

0
dx

(1−c2x2)(1+e2x2) , a number to
which Abel gives the name ω

2 . He clearly has in mind the analogy with the formula∫ 1

0
dx√
1−x2 = π

2 which, when it is used to define π
2 , determines the period 2π of the

trigonometric functions. In a similar way, Abel’s ω has the property that 2ω is a
period of Φ, although he does not prove this property of ω right away. Instead, he
observes that changing x to ix in the defining formula interchanges e and c and
leads to a second, purely imaginary, period of Φ, which he calls 2iω̃. In short, he
begins with the double periodicity of Φ.

It must be remembered that the theory of functions of a complex variable was
then in its infancy. Abel dealt primarily in formulas—he put the defining relation
in the form (13.1) because it “made the formulas simpler,” and he followed his
derivation of his form of the addition formula with the statement14 that “one can
deduce a crowd [une foule] of others” (formulas). After the first sections of the
paper, the requirement that c2 and e2 be positive reals seems to be forgotten. I
believe that once he had established the formulas in this case, he would comfortably
assume them to be true for all complex numbers c and e for which (1−c2x2)(1+e2x2)
has distinct roots; he notes in his introduction that Legendre assumed e2 was
negative, not positive, and he would surely not have intended to exclude all of the
cases covered by Legendre. From this point of view, it is natural that he would first
establish a real period and a purely imaginary period in the case in which c2 > 0,
e2 > 0. Then he could use his version of the addition formula to represent the
value of Φ throughout the complex plane and deduce formulas that describe all of
its periods, which is exactly what he did.

14. Parameterizing elliptic curves

The defining equation (13.1) of Abel’s function Φ(t) can also be written, as Abel
himself wrote it15 in his introduction, in the form

Φ′(t) =
√

(1 − c2Φ(t)2)(1 + e2Φ(t)2).

In other words, the functions x(t) = Φ(t) and z(t) = Φ′(t) parameterize the elliptic
curve z2 = (1 − c2x2)(1 + e2x2), which suggests that Abel’s Φ(t) can be obtained
as a byproduct of a general solution of the problem: Parameterize elliptic curves.

12Abel used the letter α instead of t for the independent variable, and the letter φ instead of Φ
for the function. The change from φ to Φ is made here to avoid confusion with the φ introduced
in Section 16.

13He first gives the denominator of the integrand the form
√

(1 − x2)(1 − c2x2) that Legendre

used, but then says, “M. Legendre takes c2 to be positive, but I have noticed that the formulas
become simpler when one takes c2 to be negative and equal to −e2.” He then changes 1 to c2 for
the sake of symmetry.

14[1], §3.
15Except that he wrote α for t and φ for Φ.
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Part I shows that any given elliptic curve is equivalent to the 24 elliptic curves
of the form x2 + y2 = a2 + a2x2y2 in which a ranges over the 24 roots of K(x) =
(x8 + 14x4 + 1)3 − 108J(x5 − x)4, J being the J-invariant of the given curve. In
Part I, however, a was an algebraic number and the curves were algebraic curves.
Abel’s Φ(t) belongs in an altogether different realm, the realm of functions of a
complex variable, but the statement and proof of the result adapt immediately to
Abel’s case: If f(x) is a polynomial of degree 3 or 4 with complex coefficients and
with distinct roots, the curve z2 = f(x) is equivalent16 to each of the 24 curves of
the form x2 + y2 = a2 + a2x2y2 in which a is a complex root of the same K(x),
J being the complex number given by the formulas of Section 6. Here the exact
meaning of “curve” can remain unspecified because the meaning of “equivalent” is
clear: Two curves z2 = f(x) and v2 = g(u) are equivalent if there is a fractional
linear transformation of the Riemann sphere that carries the four roots of f(x) to
the four roots of g(u). (A polynomial of degree 3 should be regarded as a polynomial
of degree 4 with one root at ∞.)

Since an equivalence between elliptic curves implies explicit birational formu-
las17 relating their coordinates, a parameterization of an elliptic curve implies a
parameterization of any curve equivalent to it in the sense just defined, and the
problem of parameterizing elliptic curves becomes the problem of parameterizing
elliptic curves of the special form x2 + y2 = a2 + a2x2y2, where a is a complex
number (for which a5 �= a), and, even more narrowly, of parameterizing just one of
each set of 24 equivalent curves of this form.

In a certain sense, this parameterization problem is solved by the expansions of
x and y in powers of t in Section 12. If a is a given complex number (a5 �= a)
and if these power series converge for |t| < δ (as they do for any given a when δ
is sufficiently small), then the functions x(t) and y(t) of a complex variable t that
they define satisfy x2 + y2 = a2 + a2x2y2 on the disk |t| < δ and therefore satisfy
this equation in whatever region of the t-plane their definitions can be extended to.
Seen from this point of view, the problem is simply the analytic continuation of the
functions x(t) and y(t) defined by these series to the entire t-plane.

Like Riemann’s analytic continuation of ζ(s) to the entire complex plane in [11],
these analytic continuations will be accomplished by finding “an expression of the
function that is always valid.”

15. A doubly periodic function

In addition to making possible the simple statement (3.1) of the addition formula
on an elliptic curve, the normal form x2 + y2 = a2 + a2x2y2 has the advantage of
dealing with x and y symmetrically, so that the parameterizing functions x(t) and
y(t) of the last section are in essence the same function just as sin t and cos t are
essentially the same function. The symmetries of this function determine it and
show that it must be, in essence, the function with the “always valid” expression
(15.1) for a suitably chosen value of τ . The formula is a quotient of θ-functions, but
there is no need to invoke the theory of θ-functions because the needed properties
can be deduced directly.

16Now that the ground field is the complex numbers, one can even say that the fields are
birationally equivalent.

17See Section 5.
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Theorem 15.1. Given a complex number τ in the upper half plane �τ > 0, the
formula

(15.1) ψ(t) =
∑

n odd eiπ( n2
2 ·τ+nt)

∑
n even eiπ( n2

2 ·τ+nt)

(the variable of summation n ranges over all integers, positive and negative, with
odd integers in the numerator and even integers in the denominator) defines a
meromorphic function ψ(t) of a complex variable t with the following properties:

(1) ψ(t + 1) = −ψ(t).
(2) ψ(t + τ ) = 1

ψ(t) .
(3) The periods 2 and 2τ of ψ(t) implied by (1) and (2) are a basis of the

periods in the sense that if γ is a complex number for which ψ(t+γ) = ψ(t)
for all t, then there are integers m and n for which γ = 2m + 2nτ .

(4) The only zeros of ψ(t) in the period parallelogram {r + sτ : 0 ≤ r < 2, 0 ≤
s < 2} are at 1

2 and 3
2 . Therefore, the only poles in this parallelogram are

at 1
2 + τ and 3

2 + τ .
(5) ψ( τ

2 ) = 1.
(6) ψ( τ

2 − 1
2 ) = i.

(7) Properties 1-5 determine ψ(t).

Proof of convergence. The summand in the sums in the numerator and denomi-
nator is wn2/4zn/2 where w = e2πiτ and z = e2πit, so its modulus is ek where
k = n2

4 �(2πiτ)+ n
2�(2πit) = −n(nπ

2 ·�τ +π ·�t), which is less than e−n whenever
n is large enough that nπ

2 ·�τ +π ·�t > 1. Therefore, both sums converge to entire
functions. (In fact, they converge extremely rapidly when |t| is small and �τ is at
all large.) The quotient of these entire functions is meromorphic. �

Lemma 15.2. The denominator of (15.1) is a constant times the infinite product
∞∏

n=1

(1 + w2n−1z−1)(1 + w2n−1z),

where w = e2πiτ and z = e2πit.

Proof of the lemma. This infinite product converges because its nth term has the
form (1 + rw2n)(1 + sw2n) where r and s are fixed and the modulus of w is less
than 1. It defines a complex analytic function of z for all z other than 0 and ∞.
Let

∑∞
n=−∞ Cnzn be the Laurent expansion of this function. Changing t to t + 2τ

changes z to z · e2πi·2τ = zw2 and therefore changes the factors 1 + w2n−1z−1 to
1+w2n−3z−1 and changes the factors 1+w2n−1z to 1+w2n+1z, so the new product
contains only one factor 1 + w−1z−1 that was not in the original product and fails
to contain just one factor 1 + wz of the original product, which implies that

∞∑
n=−∞

Cn · (zw2)n =
1 + w−1z−1

1 + wz

∞∑
n=−∞

Cnzn.

The factor in front of the sum on the right is 1
wz , so multiplication by wz gives

∞∑
n=−∞

Cn · w2n+1 · zn+1 =
∞∑

n=−∞
Cn · zn.
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Equating the coefficients in these two Laurent expansions gives Cn+1 = Cn ·w2n+1.
When Dn is defined to be Cnw−n2

one finds Dn+1 = Cn+1w
−n2−2n−1 = Cnw−n2

=
Dn. Thus, Dn is independent of n—call it D—and the infinite product in the
lemma is

∑∞
n=∞ Cnzn = D ·

∑∞
n=−∞ wn2

zn = D ·
∑

m even wm2/4zm/2, as was to
be shown. �

Proof of Properties 1–7. The poles of ψ(t) are at the zeros of the infinite product
in the lemma, which occur when z±1 = −w2n−1; these are the points at which
e±2πit = eπi+2πi(2n−1)τ , which is to say that ±t = 1

2 + (2n − 1)τ + m is the
condition for t to be a pole of ψ(t), where m is an integer and n is a positive
integer. In conclusion, the poles of ψ(t) are at the points t = 1

2 + m + (2n− 1)τ for
integer m and n, as Property 4 states.

Property 1 follows from the observation that changing t to t+1 changes the sum-
mand eiπ( n2

2 ·τ+nt) in (15.1) to (−1)neiπ( n2
2 ·τ+nt), thereby multiplying summands

in the numerator by −1 and leaving summands in the denominator unchanged.

If the numerator and denominator of ψ(t + τ ) =
∑

n odd eiπ( n2
2 ·τ+nt+nτ)

∑
n even eiπ( n2

2 ·τ+nt+nτ)
are mul-

tiplied by eiπ τ
2 +t, the result is

∑
n odd eiπ( (n+1)2

2 ·τ+(n+1)t)

∑
n even eiπ( (n+1)2

2 ·τ+(n+1)t)
, from which Property 2

follows.
If p is a period of ψ(t), then adding p to a pole of ψ(t) must give a pole of ψ(t),

so p must have the form m + 2nτ for integers m and n. Since Property 1 shows
that 1 is not a period of ψ(t), m must be even, and Property 3 follows.

Property 5 can be proved by setting n = −m − 1 in the numerator of ψ( τ
2 ) =

∑
n odd eiπ( n2

2 ·τ+ nτ
2 )

∑
n even eiπ( n2

2 ·τ+ nτ
2 )

=
∑

n odd e
iπτ
2 (n2+n)

∑
n even e

iπτ
2 (n2+n)

to find
∑

m even e
iπτ
2 ((−1−m)2+(−1−m))

∑
n even e

iπτ
2 (n2+n)

= 1.

Property 6 follows when the same trick is applied to

ψ(
τ

2
− 1

2
) =

∑
n odd e

iπτ
2 π(n2+n) · (−i)n∑

n even e
iπτ
2 (n2+n) · (−i)n

=
∑

m even e
iπτ
2 π(m2+m) · (−i)−1−m∑

n even e
iπτ
2 (n2+n) · (−i)n

= i ·
∑

m even e
iπτ
2 π(m2+m) · im∑

n even e
iπτ
2 (n2+n) · i−n

= i,

(15.2)

because in = i−n when n is even.
If two doubly periodic meromorphic functions have the same poles and zeros,

their quotient has no poles or zeros; therefore, their quotient is an analytic func-
tion that is defined and nonzero in the entire complex plane. Such a function is
represented by a power series with an infinite radius of convergence. In particular,
its modulus is bounded on the disk of radius R for any R. For R sufficiently large,
the disk includes a period parallelogram, so the modulus of the quotient is bounded
on the period parallelogram and therefore bounded on the entire complex plane,
which implies the quotient is a constant. In short, the zeros and poles of a doubly
periodic function determine the function up to a nonzero constant multiple. Thus,
a meromorphic function with Properties 1–4 is cψ(t) where c is its value at τ

2 . �
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16. A transcendental equation that solves the parameterization

problem

Let a complex number τ in the upper half plane be given; let ψ(t) be the mero-
morphic function of t, depending on τ , defined in the last section; and let φ(t) =
ψ(t− 1

2 ). The functions φ(t)2+ψ(t)2 and 1+φ(t)2ψ(t)2 are doubly periodic with pe-
riods 2 and 2τ , and they have the same zeros and poles, namely, double poles where
φ(t) or ψ(t) has a pole (these are the points t = m

2 + (2n + 1)τ where m and n are
integers, of which there are 4 in each period parallelogram) and zeros at the points
where ψ(t) is a power of i (these are the points t = m

2 + (2n+1)τ
2 where m and n are in-

tegers, of which there are 8 in each period parallelogram). Therefore, their quotient
is a constant. At t = 0 the first is ψ(0)2 and the second is 1, so the functions φ(t)
and ψ(t) identically satisfy the equation φ(t)2 + ψ(t)2 = ψ(0)2 + ψ(0)2φ(t)2ψ(t)2.

In other words, the function t �→ (φ(t), ψ(t)) for a given τ maps the complex
t-plane in a doubly periodic way onto the Riemann surface x2 + y2 = a2 + a2x2y2

for a = ψ(0).
In this way, the problem of parameterizing x2 +y2 = a2 +a2x2y2—and therefore

the problem of parameterizing any elliptic curve when it is regarded as a Riemann
surface—reduces to: Given a complex number a with a5 �= a, find a complex number
τ for which

(16.1) a =
∑

n odd e
iπn2

2 ·τ

∑
n even e

iπn2
2 ·τ

.

17. A functional equation for ψ

Let ψ(t) be written as ψ(t, τ ) to show its dependence on τ as well as t. The
functional equation

(17.1) ψ(
t

τ
,−1

τ
) =

1 − ψ(t, τ )
1 + ψ(t, τ )

holds for this function (for all complex t and all τ in the complex upper half plane).
The functions on either side of this equation are characterized by the properties that
they (1) are doubly periodic and (2, 2τ ) is a basis of the periods, (2) the zeros in
the period parallelogram are at τ

2 and 3τ
2 , (3) the poles in the period parallelogram

are at τ
2 + 1 and 3τ

2 + 1, and (4) the value at 1
2 is 1.

In the case of ψ( t
τ ,− 1

τ ), adding 1 to t adds 1
τ to the first argument of the function,

which subtracts − 1
τ , which takes the function to its reciprocal. In particular, as

a function of t it has the period 2. Adding τ to t adds 1 to the first argument of
ψ( t

τ ,− 1
τ ), which changes its sign. In particular, as a function of t it has the period

2τ . Its zeros are the points where t
τ = 1

2 +m+2n(− 1
τ ) for integer m and n, and its

poles are the points where t
τ = 1

2 +m+(2n−1)(− 1
τ ), which shows that the function

has properties (1)–(3). Finally, its value at 1
2 is ψ( 1

2τ ,− 1
τ ) = ψ(− 1

2τ ,− 1
τ )−1 = 1.

In the case of 1−ψ(t,τ)
1+ψ(t,τ) , the periods are clearly the same as the periods of ψ(t, τ ).

Its value at t = 1
2 is 1 because ψ( 1

2 , τ ) = 0. The zeros occur where ψ(t, τ ) = 1. The
two places in the period parallelogram of ψ(t, τ ) where the value 1 occurs are t = τ

2

and t = 3τ
2 , so (2) holds. Similarly, (3) holds because the places where ψ(t, τ ) = −1

are obtained from the places where ψ(t, τ ) = 1 by adding 1 to t.
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18. The action of the modular group

The modular group can be regarded as the group of transformations of the upper
half plane generated by τ �→ τ + 1 and τ �→ − 1

τ . An element S of the modular
group acts on the function ψ(t, τ ), carrying it to ψ(t, Sτ ).

Theorem 18.1. The orbit of a = ψ(0, τ ) under this action of the modular group
consists of the complex numbers listed in (6.1).

Proof. Adding 1 to τ multiplies the summand eiπn2τ/2 in the numerator and de-
nominator of ψ(0, τ ) by eiπn2/2 = in

2
, which is i when n is odd and 1 when n is even.

In short, ψ(0, τ + 1) = iψ(0, τ ). On the other hand, the functional equation (17.1)
implies that ψ(0,− 1

τ ) = 1−ψ(0,τ)
1+ψ(0,τ) . Therefore, the modular group carries a = ψ(0, τ )

to all of its images under compositions of the two fractional linear transformations
a �→ ia and a �→ 1−a

1+a , which are the 24 values listed in (6.1). �

The kernel of the above homorphism from the modular group to the group of
24 fractional linear transformations of a is a normal subgroup of index 24 in the
modular group. Because it contains τ �→ τ + 4, it is what is called the congruence
subgroup of level 4, containing those elements of the modular group whose matrix
representations18 are congruent to ±I mod 4.

19. A fundamental domain for a

A fundamental domain of the action of the group of the cube on the surface of
the cube is given by an isosceles triangle formed on a face of the cube by joining
the center of the face to the ends of one of its edges. In terms of the correspondence
between the surface of a cube and the points of the Riemann sphere as in Section 6,
the face of the cube corresponding to 0 is the curvilinear “square” one of whose sides
is a segment of the circle through i with center −1, namely, the segment of that
circle that lies between the ray from the origin that bisects the fourth quadrant and
the ray from the origin that bisects the first quadrant, and whose remaining sides
are obtained by rotations of 90◦ around the origin. Thus, a fundamental domain
for the action of the group of the cube on the orbits (6.1) is the region D bounded
by the line segments from 0 to (1 ± i)

√
3−1
2 and the circular arc joining the two

points (1 ± i)
√

3−1
2 that passes through

√
2 − 1. (The region shaded in Figure 1.)

Every orbit (6.1) then contains exactly one point of D, except that points on the
boundary of D are in the same orbits as their complex conjugates. (The points 0
and

√
2− 1 on the intersection of the boundary of D and the real axis are the only

points of their orbits that lie in D.)
To parameterize all elliptic curves, it will suffice to solve the transcendental

equation (16.1) for all complex numbers a �= 0 in D.

20. Solution of the transcendental equation

When τ is chosen in such a way that a = ψ(0), the functions φ′(t) and ψ(t)(1−
a2ψ(t)2) have the same zeros and poles, so their quotient is a constant, say

φ′(t) = µ · ψ(t)(1 − a2φ(t)2).

18The modular group is the quotient group SL(2,Z)/{±I} in a natural way.
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−1 1

2
√3−1(1−i)

2
√3−1(1+i)

√2−1

−i

i

0

Figure 1.

Specifically, the functions on the two sides of this equation have periods generated
by (2, 2τ ), have double poles where φ(t) has poles (these are the points in the
period parallelogram where t = τ , τ + 1) and are zero at the places where φ(t) has
double values (these are the points where φ(t) = ±a, ± 1

a , the points in the period
parallelogram where t = 1

2 , 3
2 , 1

2 + τ , and 3
2 + τ ). In the function on the right,

the poles of ψ(t) where t = 1
2 + τ and 3

2 + τ are cancelled by the double zeros of
1 − a2φ(t)2 at these points, leaving simple zeros at these points in addition to the
simple zeros of ψ(t) at the points t = 1

2 , 3
2 .

Therefore, the pullback of the differential dx
y(1−a2x2) under the parameterization

t �→ (φ(t), ψ(t)) is µ · dt, and the integral
∫ (a,0)

(0,a)
dx

y(1−a2x2) is
∫ 1

2
0

µ · dt = µ
2 . In other

words, µ = 2
∫ (a,0)

(0,a)
dx

y(1−a2x2) , where the integral is along the path on the Riemann
surface from (0, a) to (a, 0) that is parameterized by φ and ψ as t moves along a
path in the t-plane from t = 0 to t = 1

2 . (The t-plane is simply connected and
dx

y(1−a2x2) is holomorphic, so the integral is independent of the path.) When a is
in the fundamental domain D this definite integral can be written as

∫ a

0
dx

y(1−a2x2) ,
where the path of integration is the line segment in the x-plane from 0 to a and
where y is the function of x defined on the disk |x| < |a| by the formula y =

√
a2−x2

1−a2x2

and the condition that y = a when x = 0. (The poles of a2−x2

1−a2x2 at x = ± 1
a lie

outside the disk when a is in D, and the zeros at x = ±a are on the boundary
of the disk. The integrand has a pole at x = a, but the definite integral, though
improper, is convergent.) In summary, then, µ is given by the formula

µ = 2
∫ a

0

dx

y(1 − a2x2)
= 2

∫ a

0

dx√
(a2 − x2)(1 − a2x2)

.
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Similarly, the integral of dx
y(1−a2x2) along the Riemann surface from (0, a) to the

4-section point19 (i, 1), when the path is parameterized by a path in the t-plane
from 0 to τ

2 , is
∫ τ

2
0

µ dt = µτ
2 . Again, when a is in D, this integral is unambiguously

indicated by the integral
∫ i

0
dx

y(1−a2x2) , because y =
√

a2−x2

1−a2x2 is determined all along
the line segment from 0 to i in the x-plane by the conditions that its value at x = 0
be a and that it depend continuously on x. (In short, the line segment avoids the
zeros and poles of a2−x2

1−a2x2 .)
Therefore, provided a is in D, the required value of τ can be expressed in terms

of a as

(20.1) τ =
µτ
2
µ
2

=

∫ i

0
dx

y(1−a2x2)∫ a

0
dx

y(1−a2x2)

where the definite integrals are taken along line segments in the x-plane, the inte-
grand is a at x = 0, and the integrand is determined along the paths of integration
by continuity.

Because it expresses τ in terms of a, this formula solves the problem.

21. A bisection method

The definite integrals that determine τ in formula (20.1) are of the form∫ (φ(t),ψ(t))

(0,a)

dx

y(1 − a2x2)

where the path of integration is determined by the parameterization t �→(φ(t), ψ(t)).
Although the integral determines a complex number, the direct computation of
that number is impractical. It can be made practical by using the fact that t �→
(φ(t), ψ(t)) is a group homomorphism to establish the following bisection method.

The homomorphism property of t �→ (φ(t), ψ(t)) is the addition formula (3.1),
which implies

φ(2t) =
1
a
· 2φ(t)ψ(t)
1 + φ(t)2ψ(t)2

, ψ(2t) =
1
a
· ψ(t)2 − φ(t)2

1 − φ(t)2ψ(t)2
,

so φ(t) and ψ(t) can be found by solving algebraic equations when φ(2t) and ψ(2t)
are known. Specifically, let (φ(2t), ψ(2t)) be written (X, Y ) and (φ(t), ψ(t)) be
written (x, y); then a(1− x2y2)Y = y2 − x2, and multiplication of this equation by
1 − a2x2 and use of y2(1 − a2x2) = a2 − x2 gives aY (1 − a2x2) − aY x2(a2 − x2) =
a2 −x2 −x2(1−a2x2), which is to say (aY −a2)x4 +2(1−a3Y )x2 +(aY −a2) = 0,
from which it is clear that if x is one solution, then the other three are −x and ± 1

x .
Moreover, once x is known, y2 = a2−x2

1−a2x2 is known and the equation X = 1
a · 2xy

1+x2y2

determines y.
In this way, knowledge of (φ(2t), ψ(2t)) reduces to four the possible values of

(φ(t), ψ(t)). Algebraically, the four are indistinguishable, but when the path from
(0, a) to (φ(2t), ψ(2t)) stays near (0, a), the correct value of (φ(t), ψ(t)) can be found
on the basis of topological considerations.

19In Section 11, the bisection points were shown to be (0,−a), (∞,± 1
a
). The 4-section points

are the 12 points whose doubles are bisection points, namely, (±a, 0), (± 1
a
,∞), (±i,±1), and

(±1,±i).
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Let B = a3Y −1
aY −a2 , where Y = ψ(2t), so that the problem is to choose x = φ(t)

from among the four roots of x4 − 2Bx2 + 1. When t is not too large, Y is near a
and |B| is large, so x2 = B ± B

√
1 − B−2 can be expanded as a convergent series

B ± B(1 − 1
2 · B−2 − · · · ), which gives two values of x2, one near 1

2B−1 and the
other near 2B. When t is not too large, x2 will be small and therefore not near 2B,
so x2 must be given by

x2 =
1
2
· B−1 +

1
2
· 1
4
· B−3 +

1
2
· 1
4
· 3
6
· B−5 +

1
2
· 1
4
· 3
6
· 5
8
· B−7 + · · · .

One can choose between the square roots of this known x2 on the basis of the fact
that when t is not too large, x must be near X

2 , after which y is determined as
above.

Because∫ (φ(2t),ψ(2t))

(0,a)

dx

y(1 − a2x2)
=

∫ 2t

0

µ dt = 2
∫ t

0

µ dt = 2
∫ (φ(t),ψ(t))

(0,a)

dx

y(1 − a2x2)
,

this determination of (φ(t), ψ(t)) “bisects” the integral on the left in the sense that
it reduces the evaluation of the definite integral to the evaluation of a definite
integral over “half” the path of integration.

22. Numerical solution for τ given a

When the definite integrals in the numerator and denominator of (20.1) are both
bisected by the method of Section 21, their ratio will still be τ , but the definite
integrals will be over shorter paths and therefore easier to evaluate. After n such
bisections, the formula becomes

(22.1) τ =

∫ x′
n

0
dx

y(1−a2x2)∫ xn

0
dx

y(1−a2x2)

where x0 = a, x1, x2, . . . is the sequence of x-coordinates of the points (xk, yk)
obtained by starting with the direct path from (0, a) to (a, 0) and repeatedly “bi-
secting,” and where x′

0 = i, x′
1, x′

2, . . . is the analogous sequence of x-coordinates
of points (x′

k, y′
k) obtained by starting with the direct path from (0, a) to (i, 1) and

“bisecting” it. For large n, the integrals are easy to evaluate because the paths of
integration are extremely short.

For example, when a is .4 + .1i, which lies in D, implementation of the above
method on a programmable calculator gives the sequences (xk, yk) and (x′

k, y′
k)

shown in Table 1. The values have been rounded to 4 places but were computed
with greater accuracy. Note that the y’s approach a and each x is roughly half its
predecessor.

To a first approximation, the integrand is constant over these short paths of
integration, and the constant is the same 1

a in the numerator and denominator, so

to a first approximation20 τ ≈ x′
4

x4
≈ .1596 + 1.007i. Direct evaluation of ψ(0) for

20The integral π
2

=
∫ 1
0

dx√
1−x2

can be computed in an analogous way. For small values of

x, the doubling formulas X = 2xy, Y = y2 − x2 for the sine and cosine imply 2
∫ x
0

dx√
1−x2

=∫ X
0

dx√
1−x2

where
√

1 − X2 = Y = y2 − x2 and
√

1 − x2 = y. Thus,
√

1 − X2 = 1 − 2x2, so

X determines x via x =

√
1−

√
1−X2

2
. Application of this method to π

2
=

∫ 1
0

dx√
1−x2

five times,
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Table 1.

k xk yk x′
k y′

k

0 .4 + .1i 0 i 1

1 .2832 + .0717i .2832 + .0717i −.0246 + .3658i .5355 + .0864i

2 .1534 + .0392i .3697 + .0928i −.0149 + .1689i .4328 + .0972i

3 .0782 + .0200i .3924 + .0982i −.0077 + .0828i .4081 + .0993i

4 .0393 + .0101i .3981 + .0995i −.0039 + .0412i .4020 + .0998i

this τ—which is easy because of the rapid convergence of the series in the numerator
and denominator—verifies that it is near a = .4 + .1i.

Closer approximations to τ can be found by further bisection and by expanding
the integrals in infinite series in their upper limits of integration, but because ψ(0)
is easy to compute with great accuracy, a very rough approximation to τ is all that
is needed to find arbitrarily close approximations to a solution of ψ(0) = a—in
other words, to determine τ as a complex number—using simple interpolation. For
example, if one starts with so rough a guess as τ = .1 + i from above and tries
τ = .9i and τ = .1 + i, one finds ψ(0) = .483 and .410 + .064i, respectively. Since
the latter is closer to .4 + .1i, let τ0 be the former and τ1 the latter, and use the
approximation τn+1−τn

ψn+1−ψn
≈ τn−τn−1

ψn−ψn−1
together with the desired value ψn+1 = a to

find the iteration formula

τn+1 = τn + (a − ψn) · τn − τn−1

ψn − ψn−1
,

which for the above τ0 and τ1 gives τ3 ≈ .15789 + 1.00403i, for which ψ(0) is very
near .4 + .1i, and further iterations converge to even better approximations.
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