What is good mathematics?
HTML articles powered by AMS MathViewer
- by Terence Tao PDF
- Bull. Amer. Math. Soc. 44 (2007), 623-634 Request permission
Abstract:
Some personal thoughts and opinions on what “good quality mathematics” is and whether one should try to define this term rigorously. As a case study, the story of Szemerédi’s theorem is presented.References
- F. A. Behrend, On sets of integers which contain no three terms in arithmetical progression, Proc. Nat. Acad. Sci. U.S.A. 32 (1946), 331–332. MR 18694, DOI 10.1073/pnas.32.12.331
- J. Bourgain, On triples in arithmetic progression, Geom. Funct. Anal. 9 (1999), no. 5, 968–984. MR 1726234, DOI 10.1007/s000390050105 bourgain-preprint J. Bourgain, Roth’s theorem on arithmetic progressions revisited, preprint. erdos P. Erdős and P. Turán, On some sequences of integers, J. London Math. Soc. 11 (1936), 261–264.
- Harry Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256. MR 498471, DOI 10.1007/BF02813304
- H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, N.J., 1981. M. B. Porter Lectures. MR 603625, DOI 10.1515/9781400855162
- H. Furstenberg, Y. Katznelson, and D. Ornstein, The ergodic theoretical proof of Szemerédi’s theorem, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3, 527–552. MR 670131, DOI 10.1090/S0273-0979-1982-15052-2 goldston-yildirim D. Goldston and C. Yıldırım, Small gaps between primes, I, preprint.
- Daniel Alan Goldston, Yoichi Motohashi, János Pintz, and Cem Yalçın Yildirim, Small gaps between primes exist, Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), no. 4, 61–65. MR 2222213
- W. T. Gowers, Lower bounds of tower type for Szemerédi’s uniformity lemma, Geom. Funct. Anal. 7 (1997), no. 2, 322–337. MR 1445389, DOI 10.1007/PL00001621
- W. T. Gowers, A new proof of Szemerédi’s theorem for arithmetic progressions of length four, Geom. Funct. Anal. 8 (1998), no. 3, 529–551. MR 1631259, DOI 10.1007/s000390050065
- V. Arnold, M. Atiyah, P. Lax, and B. Mazur (eds.), Mathematics: frontiers and perspectives, American Mathematical Society, Providence, RI, 2000. MR 1754762
- W. T. Gowers, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001), no. 3, 465–588. MR 1844079, DOI 10.1007/s00039-001-0332-9
- W. T. Gowers, Quasirandomness, counting and regularity for 3-uniform hypergraphs, Combin. Probab. Comput. 15 (2006), no. 1-2, 143–184. MR 2195580, DOI 10.1017/S0963548305007236
- Ben Green, Roth’s theorem in the primes, Ann. of Math. (2) 161 (2005), no. 3, 1609–1636. MR 2180408, DOI 10.4007/annals.2005.161.1609
- B. Green, A Szemerédi-type regularity lemma in abelian groups, with applications, Geom. Funct. Anal. 15 (2005), no. 2, 340–376. MR 2153903, DOI 10.1007/s00039-005-0509-8 gt B.J. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, to appear in Ann. of Math.
- A. W. Hales and R. I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106 (1963), 222–229. MR 143712, DOI 10.1090/S0002-9947-1963-0143712-1
- D. R. Heath-Brown, Three primes and an almost-prime in arithmetic progression, J. London Math. Soc. (2) 23 (1981), no. 3, 396–414. MR 616545, DOI 10.1112/jlms/s2-23.3.396
- Bernard Host and Bryna Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2) 161 (2005), no. 1, 397–488. MR 2150389, DOI 10.4007/annals.2005.161.397
- Yoshiharu Kohayakawa, Tomasz Łuczak, and Vojtěch Rödl, Arithmetic progressions of length three in subsets of a random set, Acta Arith. 75 (1996), no. 2, 133–163. MR 1379396, DOI 10.4064/aa-75-2-133-163
- Brendan Nagle, Vojtěch Rödl, and Mathias Schacht, The counting lemma for regular $k$-uniform hypergraphs, Random Structures Algorithms 28 (2006), no. 2, 113–179. MR 2198495, DOI 10.1002/rsa.20117 ramsey F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930), 264–285. rs V. Rödl and M. Schacht, Regular partitions of hypergraphs, preprint.
- Vojtěch Rödl and Jozef Skokan, Regularity lemma for $k$-uniform hypergraphs, Random Structures Algorithms 25 (2004), no. 1, 1–42. MR 2069663, DOI 10.1002/rsa.20017
- Vojtěch Rödl and Jozef Skokan, Applications of the regularity lemma for uniform hypergraphs, Random Structures Algorithms 28 (2006), no. 2, 180–194. MR 2198496, DOI 10.1002/rsa.20108
- K. F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104–109. MR 51853, DOI 10.1112/jlms/s1-28.1.104
- K. F. Roth, Irregularities of sequences relative to arithmetic progressions. IV, Period. Math. Hungar. 2 (1972), 301–326. MR 369311, DOI 10.1007/BF02018670
- I. Z. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976) Colloq. Math. Soc. János Bolyai, vol. 18, North-Holland, Amsterdam-New York, 1978, pp. 939–945. MR 519318
- Saharon Shelah, Primitive recursive bounds for van der Waerden numbers, J. Amer. Math. Soc. 1 (1988), no. 3, 683–697. MR 929498, DOI 10.1090/S0894-0347-1988-0929498-X
- E. Szemerédi, On sets of integers containing no four elements in arithmetic progression, Acta Math. Acad. Sci. Hungar. 20 (1969), 89–104. MR 245555, DOI 10.1007/BF01894569
- E. Szemerédi, On sets of integers containing no $k$ elements in arithmetic progression, Acta Arith. 27 (1975), 199–245. MR 369312, DOI 10.4064/aa-27-1-199-245 dichotomy T. Tao, The dichotomy between structure and randomness, arithmetic progressions, and the primes, to appear, ICM 2006 proceedings.
- Terence Tao, A quantitative ergodic theory proof of Szemerédi’s theorem, Electron. J. Combin. 13 (2006), no. 1, Research Paper 99, 49. MR 2274314
- Terence Tao and Van Vu, Additive combinatorics, Cambridge Studies in Advanced Mathematics, vol. 105, Cambridge University Press, Cambridge, 2006. MR 2289012, DOI 10.1017/CBO9780511755149
- J. G. van der Corput, Über Summen von Primzahlen und Primzahlquadraten, Math. Ann. 116 (1939), no. 1, 1–50 (German). MR 1513216, DOI 10.1007/BF01597346 vdw B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw. Arch. Wisk. 15 (1927), 212–216.
- Eugene P. Wigner, The unreasonable effectiveness of mathematics in the natural sciences [Comm. Pure Appl. Math. 13 (1960), 1–14; Zbl 102, 7], Mathematical analysis of physical systems, Van Nostrand Reinhold, New York, 1985, pp. 1–14. MR 824292
- Tamar Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc. 20 (2007), no. 1, 53–97. MR 2257397, DOI 10.1090/S0894-0347-06-00532-7
Additional Information
- Terence Tao
- Affiliation: Department of Mathematics, University of California, Los Angeles, Los Angeles, California 90095-1555
- MR Author ID: 361755
- ORCID: 0000-0002-0140-7641
- Email: tao@math.ucla.edu
- Received by editor(s): February 7, 2007
- Published electronically: May 2, 2007
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Bull. Amer. Math. Soc. 44 (2007), 623-634
- MSC (2000): Primary 00A30
- DOI: https://doi.org/10.1090/S0273-0979-07-01168-8
- MathSciNet review: 2338369