Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Mathematics and physics
HTML articles powered by AMS MathViewer

by Peter D. Lax PDF
Bull. Amer. Math. Soc. 45 (2008), 135-152 Request permission
References
  • G. D. Birkhoff, What is the ergodic theorem?, Amer. Math. Monthly 49 (1942), 222–226. MR 6619, DOI 10.2307/2303229
  • Ludwig Boltzmann, Wissenschaftliche Abhandlungen von Ludwig Boltzmann. I. Band (1865–1874); II. Band (1875–1881); III. Band (1882–1905), Chelsea Publishing Co., New York, 1968 (German). Herausgegeben von Fritz Hasenöhrl. MR 0237281
  • Demetrios Christodoulou and Sergiu Klainerman, The global nonlinear stability of the Minkowski space, Princeton Mathematical Series, vol. 41, Princeton University Press, Princeton, NJ, 1993. MR 1316662
  • Louis de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), no. 1-2, 137–152. MR 772434, DOI 10.1007/BF02392821
  • 3a Dyson, F., Statistical theory of the energy levels of complex systems, I, II, III, J. Math. Physics 3 (1962), 140–175.
  • Freeman J. Dyson, Missed opportunities, Bull. Amer. Math. Soc. 78 (1972), 635–652. MR 522147, DOI 10.1090/S0002-9904-1972-12971-9
  • 6 Gibbs, J. W., The Collected Works of J. Willard Gibbs, Longman’s, Green and Co., 1931.
  • James Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 18 (1965), 697–715. MR 194770, DOI 10.1002/cpa.3160180408
  • David Gottlieb and Chi-Wang Shu, On the Gibbs phenomenon and its resolution, SIAM Rev. 39 (1997), no. 4, 644–668. MR 1491051, DOI 10.1137/S0036144596301390
  • Edwin Hewitt and Robert E. Hewitt, The Gibbs-Wilbraham phenomenon: an episode in Fourier analysis, Arch. Hist. Exact Sci. 21 (1979/80), no. 2, 129–160. MR 555102, DOI 10.1007/BF00330404
  • David Hilbert, Begründung der kinetischen Gastheorie, Math. Ann. 72 (1912), no. 4, 562–577 (German). MR 1511713, DOI 10.1007/BF01456676
  • Songming Hou and Xu-Dong Liu, Solutions of multi-dimensional hyperbolic systems of conservation laws by square entropy condition satisfying discontinuous Galerkin method, J. Sci. Comput. 31 (2007), no. 1-2, 127–151. MR 2304273, DOI 10.1007/s10915-006-9105-9
  • 12 Koestler, A., and Butterfield, H., The Sleepwalkers, Peregrine Books, 1959.
  • Jean Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math. 63 (1934), no. 1, 193–248 (French). MR 1555394, DOI 10.1007/BF02547354
  • Peter D. Lax and Xu-Dong Liu, Solution of two-dimensional Riemann problems of gas dynamics by positive schemes, SIAM J. Sci. Comput. 19 (1998), no. 2, 319–340. MR 1618863, DOI 10.1137/S1064827595291819
  • Karl Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann. 89 (1923), no. 1-2, 103–121 (German). MR 1512136, DOI 10.1007/BF01448091
  • James Clerk Maxwell, A dynamical theory of the electromagnetic field, Scottish Academic Press, Edinburgh, 1982. With an appreciation by Albert Einstein; Edited and with an introduction by Thomas F. Torrance. MR 778034
  • 17 McCoy, B. M., Introductory Remarks to Szegö’s Paper “On Certain Hermitean Forms Associated with the Fourier Series of a Positive Function”, in Gabor Szegö Collected Papers, R. Askey, ed., Vol. 1, 47–51, Birkhäuser, 1982.
  • O. Neugebauer, Notes on Kepler, Comm. Pure Appl. Math. 14 (1961), 593–597. MR 131339, DOI 10.1002/cpa.3160140330
  • 22 Odlyzko, A., On the distribution of the spacing between the zeros of the $\zeta$ function, Math. Comp. 48 (1989), 273–308.
  • L. Onsager, Statistical hydrodynamics, Nuovo Cimento (9) 6 (1949), no. Supplemento, 2 (Convegno Internazionale di Meccanica Statistica), 279–287. MR 36116
  • 24 Riemann, B., Über die Fortpflanzung ebener Luftwellen von endlicher Schwingingsweite, 188–207, Collected Papers, Springer Verlag, 1990.
  • E. Schrödinger, Collected papers on wave mechanics, Chelsea Publishing Co., New York, 1982. Translated from the second German edition by J. F. Shearer and W. M. Deans; Including Four lectures on wave mechanics. MR 750301
  • Carsten W. Schulz-Rinne, James P. Collins, and Harland M. Glaz, Numerical solution of the Riemann problem for two-dimensional gas dynamics, SIAM J. Sci. Comput. 14 (1993), no. 6, 1394–1414. MR 1241592, DOI 10.1137/0914082
  • Logic, methodology and philosophy of science, Stanford University Press, Stanford, Calif., 1962. MR 0166069
  • G. Szegö, On certain Hermitian forms associated with the Fourier series of a positive function, Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (1952), no. Tome Supplémentaire, 228–238. MR 51961
  • John von Neumann, Collected works. Vol. I: Logic, theory of sets and quantum mechanics, Pergamon Press, New York-Oxford-London-Paris, 1961. General editor: A. H. Taub. MR 0157871
  • John von Neumann, Collected works. Vol. I: Logic, theory of sets and quantum mechanics, Pergamon Press, New York-Oxford-London-Paris, 1961. General editor: A. H. Taub. MR 0157871
  • John von Neumann, Collected works. Vol. V: Design of computers, theory of automata and numerical analysis, A Pergamon Press Book, The Macmillan Company, New York, 1963. General editor: A. H. Taub. MR 0157875
  • Wendelin Werner, Random planar curves and Schramm-Loewner evolutions, Lectures on probability theory and statistics, Lecture Notes in Math., vol. 1840, Springer, Berlin, 2004, pp. 107–195. MR 2079672, DOI 10.1007/978-3-540-39982-7_{2}
  • 29a Wigner, E., On the statistical distribution of the width and spacing of nuclear resonance levels, Proc. Cambridge Phil. Soc. 47 (1951), 790–798. 30 Wigner, E., Random Matrices in Physics, SIAM Review 9 (1967), 1–23. 31 Wilbraham, H., On certain periodic functions, Cambridge Dublin Math. J. 3 (1848), 198–204.
  • Edward Witten, Magic, mystery, and matrix, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 343–352. MR 1756796
Similar Articles
  • Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 35-XX, 76-XX, 46-XX
  • Retrieve articles in all journals with MSC (2000): 35-XX, 76-XX, 46-XX
Additional Information
  • Peter D. Lax
  • Affiliation: Courant Institute, New York University, 251 Mercer Street, New York, New York 10012-1110
  • Received by editor(s): May 7, 2007
  • Published electronically: October 30, 2007
  • Additional Notes: This article is based on the author’s Gibbs Lecture at the Joint Mathematics Meetings in New Orleans in 2007.
  • © Copyright 2007 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Bull. Amer. Math. Soc. 45 (2008), 135-152
  • MSC (2000): Primary 35-XX, 76-XX, 46-XX
  • DOI: https://doi.org/10.1090/S0273-0979-07-01182-2
  • MathSciNet review: 2358380