From harmonic analysis to arithmetic combinatorics
Author:
Izabella Laba
Journal:
Bull. Amer. Math. Soc. 45 (2008), 77-115
MSC (2000):
Primary 11B25, 11B75, 11L07, 28A75, 28A78, 42B15, 42B20, 42B25, 52C10
DOI:
https://doi.org/10.1090/S0273-0979-07-01189-5
Published electronically:
October 17, 2007
MathSciNet review:
2358378
Full-text PDF Free Access
References | Similar Articles | Additional Information
- 1. Boris Aronov and Micha Sharir, Cutting circles into pseudo-segments and improved bounds for incidences, Discrete Comput. Geom. 28 (2002), no. 4, 475–490. Discrete and computational geometry and graph drawing (Columbia, SC, 2001). MR 1949895, https://doi.org/10.1007/s00454-001-0084-1
- 2. Antal Balog and Endre Szemerédi, A statistical theorem of set addition, Combinatorica 14 (1994), no. 3, 263–268. MR 1305895, https://doi.org/10.1007/BF01212974
- 3. M.D. Bateman, N.H. Katz, Kakeya sets in Cantor directions, preprint, 2006.
- 4. A.S. Besicovitch, Sur deux questions d'intégrabilité des fonctions, J. Soc. Phys.-Math. (Perm), 2 (1919), 105-123.
- 5. A. S. Besicovitch, On Kakeya’s problem and a similar one, Math. Z. 27 (1928), no. 1, 312–320. MR 1544912, https://doi.org/10.1007/BF01171101
- 6. A. S. Besicovitch, The Kakeya problem, Amer. Math. Monthly 70 (1963), 697–706. MR 157266, https://doi.org/10.2307/2312249
- 7. A. S. Besicovitch, On fundamental geometric properties of plane line-sets, J. London Math. Soc. 39 (1964), 441–448. MR 171896, https://doi.org/10.1112/jlms/s1-39.1.441
- 8. Vitaly Bergelson, Bernard Host, and Bryna Kra, Multiple recurrence and nilsequences, Invent. Math. 160 (2005), no. 2, 261–303. With an appendix by Imre Ruzsa. MR 2138068, https://doi.org/10.1007/s00222-004-0428-6
- 9. V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden’s and Szemerédi’s theorems, J. Amer. Math. Soc. 9 (1996), no. 3, 725–753. MR 1325795, https://doi.org/10.1090/S0894-0347-96-00194-4
- 10. Yuri Bilu, Structure of sets with small sumset, Astérisque 258 (1999), xi, 77–108 (English, with English and French summaries). Structure theory of set addition. MR 1701189
- 11. J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Analyse Math. 47 (1986), 69–85. MR 874045, https://doi.org/10.1007/BF02792533
- 12. J. Bourgain, On Λ(𝑝)-subsets of squares, Israel J. Math. 67 (1989), no. 3, 291–311. MR 1029904, https://doi.org/10.1007/BF02764948
- 13. J. Bourgain, Besicovitch type maximal operators and applications to Fourier analysis, Geom. Funct. Anal. 1 (1991), no. 2, 147–187. MR 1097257, https://doi.org/10.1007/BF01896376
- 14. J. Bourgain, 𝐿^{𝑝}-estimates for oscillatory integrals in several variables, Geom. Funct. Anal. 1 (1991), no. 4, 321–374. MR 1132294, https://doi.org/10.1007/BF01895639
- 15. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107–156. MR 1209299, https://doi.org/10.1007/BF01896020
- 16. Jean Bourgain, Hausdorff dimension and distance sets, Israel J. Math. 87 (1994), no. 1-3, 193–201. MR 1286826, https://doi.org/10.1007/BF02772994
- 17. J. Bourgain, On the dimension of Kakeya sets and related maximal inequalities, Geom. Funct. Anal. 9 (1999), no. 2, 256–282. MR 1692486, https://doi.org/10.1007/s000390050087
- 18. J. Bourgain, On triples in arithmetic progression, Geom. Funct. Anal. 9 (1999), no. 5, 968–984. MR 1726234, https://doi.org/10.1007/s000390050105
- 19. J. Bourgain, On the Erdős-Volkmann and Katz-Tao ring conjectures, Geom. Funct. Anal. 13 (2003), no. 2, 334–365. MR 1982147, https://doi.org/10.1007/s000390300008
- 20. J. Bourgain, Mordell’s exponential sum estimate revisited, J. Amer. Math. Soc. 18 (2005), no. 2, 477–499. MR 2137982, https://doi.org/10.1090/S0894-0347-05-00476-5
- 21. J. Bourgain, More on the sum-product phenomenon in prime fields and its applications, Int. J. Number Theory 1 (2005), no. 1, 1–32. MR 2172328, https://doi.org/10.1142/S1793042105000108
- 22. J. Bourgain, New encounters in combinatorial number theory: from the Kakeya problem to cryptography, Perspectives in analysis, Math. Phys. Stud., vol. 27, Springer, Berlin, 2005, pp. 17–26. MR 2206765, https://doi.org/10.1007/3-540-30434-7_2
- 23. J. Bourgain, Roth's theorem on progressions revisited, preprint, 2007.
- 24. Jean Bourgain and Mei-Chu Chang, On the size of 𝑘-fold sum and product sets of integers, J. Amer. Math. Soc. 17 (2004), no. 2, 473–497. MR 2051619, https://doi.org/10.1090/S0894-0347-03-00446-6
- 25. Jean Bourgain, Alex Gamburd, and Peter Sarnak, Sieving and expanders, C. R. Math. Acad. Sci. Paris 343 (2006), no. 3, 155–159 (English, with English and French summaries). MR 2246331, https://doi.org/10.1016/j.crma.2006.05.023
- 26. J. Bourgain, A. A. Glibichuk, and S. V. Konyagin, Estimates for the number of sums and products and for exponential sums in fields of prime order, J. London Math. Soc. (2) 73 (2006), no. 2, 380–398. MR 2225493, https://doi.org/10.1112/S0024610706022721
- 27. J. Bourgain, N. Katz, and T. Tao, A sum-product estimate in finite fields, and applications, Geom. Funct. Anal. 14 (2004), no. 1, 27–57. MR 2053599, https://doi.org/10.1007/s00039-004-0451-1
- 28.
H. Busemann, W. Feller, Differentiation der
-integrale, Fund. Math. 22 (1934), 226-256.
- 29. Anthony Carbery, Michael Christ, and James Wright, Multidimensional van der Corput and sublevel set estimates, J. Amer. Math. Soc. 12 (1999), no. 4, 981–1015. MR 1683156, https://doi.org/10.1090/S0894-0347-99-00309-4
- 30. Mei-Chu Chang, A polynomial bound in Freiman’s theorem, Duke Math. J. 113 (2002), no. 3, 399–419. MR 1909605, https://doi.org/10.1215/S0012-7094-02-11331-3
- 31. M. Chang, Factorization in generalized arithmetic progressions and applications to the Erdős-Szemerédi sum-product problems, Geom. Funct. Anal. 13 (2003), no. 4, 720–736. MR 2006555, https://doi.org/10.1007/s00039-003-0428-5
- 32. Mei-Chu Chang, The Erdős-Szemerédi problem on sum set and product set, Ann. of Math. (2) 157 (2003), no. 3, 939–957. MR 1983786, https://doi.org/10.4007/annals.2003.157.939
- 33. M.-C. Chang, Some problems in combinatorial number theory, preprint, 2007, to appear in Integers: Electronic Journal of Combinatorial Number Theory.
- 34. Michael Christ, Estimates for the 𝑘-plane transform, Indiana Univ. Math. J. 33 (1984), no. 6, 891–910. MR 763948, https://doi.org/10.1512/iumj.1984.33.33048
- 35. Michael Christ, Convolution, curvature, and combinatorics: a case study, Internat. Math. Res. Notices 19 (1998), 1033–1048. MR 1654767, https://doi.org/10.1155/S1073792898000610
- 36. Michael Christ, Alexander Nagel, Elias M. Stein, and Stephen Wainger, Singular and maximal Radon transforms: analysis and geometry, Ann. of Math. (2) 150 (1999), no. 2, 489–577. MR 1726701, https://doi.org/10.2307/121088
- 37. Kenneth L. Clarkson, Herbert Edelsbrunner, Leonidas J. Guibas, Micha Sharir, and Emo Welzl, Combinatorial complexity bounds for arrangements of curves and spheres, Discrete Comput. Geom. 5 (1990), no. 2, 99–160. MR 1032370, https://doi.org/10.1007/BF02187783
- 38. Antonio Cordoba, The Kakeya maximal function and the spherical summation multipliers, Amer. J. Math. 99 (1977), no. 1, 1–22. MR 447949, https://doi.org/10.2307/2374006
- 39. E. Croot, V. Lev, Open problems in additive combinatorics, to appear in Proceedings of a School in Additive Combinatorics, Montreal, March 30th-April 5th, 2006, eds: A. Granville, M. Nathanson and J. Solymosi.
- 40. F. Cunningham Jr., The Kakeya problem for simply connected and for star-shaped sets, Amer. Math. Monthly 78 (1971), 114–129. MR 275287, https://doi.org/10.2307/2317619
- 41. Roy O. Davies, Some remarks on the Kakeya problem, Proc. Cambridge Philos. Soc. 69 (1971), 417–421. MR 272988, https://doi.org/10.1017/s0305004100046867
- 42. Katherine Michelle Davis and Yang-Chun Chang, Lectures on Bochner-Riesz means, London Mathematical Society Lecture Note Series, vol. 114, Cambridge University Press, Cambridge, 1987. MR 921849
- 43. S. W. Drury, 𝐿^{𝑝} estimates for the X-ray transform, Illinois J. Math. 27 (1983), no. 1, 125–129. MR 684547
- 44. G. A. Edgar and Chris Miller, Borel subrings of the reals, Proc. Amer. Math. Soc. 131 (2003), no. 4, 1121–1129. MR 1948103, https://doi.org/10.1090/S0002-9939-02-06653-4
- 45. G. Elek, B. Szegedy, Limits of Hypergraphs, Removal and Regularity Lemmas. A Non-standard Approach, preprint.
- 46. György Elekes, On the number of sums and products, Acta Arith. 81 (1997), no. 4, 365–367. MR 1472816, https://doi.org/10.4064/aa-81-4-365-367
- 47. G. Elekes, Sums versus product in algebra, number theory and Erdos geometry, unpublished preprint, 2001.
- 48. Gy. Elekes and I. Z. Ruzsa, Few sums, many products, Studia Sci. Math. Hungar. 40 (2003), no. 3, 301–308. MR 2036961, https://doi.org/10.1556/SScMath.40.2003.3.4
- 49. G. Elekes, Cs. Tóth, Incidences of not too degenerate hyperplanes, Proc. 21st ACM Sympos. Comput. Geom. (Pisa, 2005), ACM Press, 16-21.
- 50. M. Burak Erdogan, A bilinear Fourier extension theorem and applications to the distance set problem, Int. Math. Res. Not. 23 (2005), 1411–1425. MR 2152236, https://doi.org/10.1155/IMRN.2005.1411
- 51. M. Burak Erdogan, On Falconer’s distance set conjecture, Rev. Mat. Iberoam. 22 (2006), no. 2, 649–662. MR 2294792, https://doi.org/10.4171/RMI/468
- 52. P. Erdös, On sets of distances of 𝑛 points, Amer. Math. Monthly 53 (1946), 248–250. MR 15796, https://doi.org/10.2307/2305092
- 53. P. Erdős and E. Szemerédi, On sums and products of integers, Studies in pure mathematics, Birkhäuser, Basel, 1983, pp. 213–218. MR 820223
- 54. P. Erdos, P. Turán, On some sequences of integers, J. London Math. Soc. 16 (1936), 261-264.
- 55. Paul Erdős and Bodo Volkmann, Additive Gruppen mit vorgegebener Hausdorffscher Dimension, J. Reine Angew. Math. 221 (1966), 203–208 (German). MR 186782
- 56. K. J. Falconer, Rings of fractional dimension, Mathematika 31 (1984), no. 1, 25–27. MR 762173, https://doi.org/10.1112/S0025579300010615
- 57. K. J. Falconer, On the Hausdorff dimensions of distance sets, Mathematika 32 (1985), no. 2, 206–212 (1986). MR 834490, https://doi.org/10.1112/S0025579300010998
- 58. K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
- 59. Charles Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9–36. MR 257819, https://doi.org/10.1007/BF02394567
- 60. Charles Fefferman, The multiplier problem for the ball, Ann. of Math. (2) 94 (1971), 330–336. MR 296602, https://doi.org/10.2307/1970864
- 61. N. Frantzikinakis, B. Host, B. Kra, Multiple recurrence and convergence for sequences related to the prime numbers, J. Reine Angew. Math., to appear.
- 62. Nikos Frantzikinakis and Bryna Kra, Convergence of multiple ergodic averages for some commuting transformations, Ergodic Theory Dynam. Systems 25 (2005), no. 3, 799–809. MR 2142946, https://doi.org/10.1017/S0143385704000616
- 63. G. A. Freĭman, On the addition of finite sets, Dokl. Akad. Nauk SSSR 158 (1964), 1038–1041 (Russian). MR 0168529
- 64. G. A. Freĭman, Foundations of a structural theory of set addition, American Mathematical Society, Providence, R. I., 1973. Translated from the Russian; Translations of Mathematical Monographs, Vol 37. MR 0360496
- 65. M. Fujiwara, S. Kakeya, On some problems of maxima and minima for the curve of constant breadth and the in-revolvable curve of the equilateral triangle, Tôhoku Mathematical Journal 11 (1917), 92-110.
- 66. Harry Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256. MR 498471, https://doi.org/10.1007/BF02813304
- 67. H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math. 34 (1978), 275–291 (1979). MR 531279, https://doi.org/10.1007/BF02790016
- 68. Hillel Furstenberg and Benjamin Weiss, A mean ergodic theorem for (1/𝑁)∑^{𝑁}_{𝑛=1}𝑓(𝑇ⁿ𝑥)𝑔(𝑇^{𝑛²}𝑥), Convergence in ergodic theory and probability (Columbus, OH, 1993) Ohio State Univ. Math. Res. Inst. Publ., vol. 5, de Gruyter, Berlin, 1996, pp. 193–227. MR 1412607
- 69.
M.Z. Garaev, An explicit sum-product estimate in
, preprint, 2007.
- 70. G. Garrigós, A. Seeger, On plate decompositions of cone multipliers, Proceedings of the conference on Harmonic Analysis and Its Applications, Hokkaido University, Sapporo, 2005.
- 71. D. Goldston, J. Pintz, C.Y. Yildirim, Primes in tuples I, Ann. Math., to appear.
- 72. D. Goldston, C.Y. Yildirim, Higher correlations of divisor sums related to primes III: Small gaps between primes, preprint, 2004.
- 73. W. T. Gowers, A new proof of Szemerédi’s theorem for arithmetic progressions of length four, Geom. Funct. Anal. 8 (1998), no. 3, 529–551. MR 1631259, https://doi.org/10.1007/s000390050065
- 74. W. T. Gowers, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001), no. 3, 465–588. MR 1844079, https://doi.org/10.1007/s00039-001-0332-9
- 75. W.T. Gowers, Some unsolved problems in additive and combinatorial number theory, preprint, 2001 (available at http://www.dpmms.cam.ac.uk/~wtg10/papers.html).
- 76. W. T. Gowers, Hypergraph regularity and the multidimensional Szemerédi theorem, preprint, 2005.
- 77. W. T. Gowers, Quasirandomness, counting and regularity for 3-uniform hypergraphs, Combin. Probab. Comput. 15 (2006), no. 1-2, 143–184. MR 2195580, https://doi.org/10.1017/S0963548305007236
- 78. A. Granville, An introduction to additive combinatorics, to appear in Proceedings of a School in Additive Combinatorics, Montreal, March 30th-April 5th, 2006, eds: A. Granville, M. Nathanson and J. Solymosi.
- 79. Ben Green, Roth’s theorem in the primes, Ann. of Math. (2) 161 (2005), no. 3, 1609–1636. MR 2180408, https://doi.org/10.4007/annals.2005.161.1609
- 80. B. Green, Structure theory of set addition, unpublished, available at http://www.dpmms.cam.ac.uk/~bjg23/papers/icmsnotes.pdf.
- 81. Ben Green, Finite field models in additive combinatorics, Surveys in combinatorics 2005, London Math. Soc. Lecture Note Ser., vol. 327, Cambridge Univ. Press, Cambridge, 2005, pp. 1–27. MR 2187732, https://doi.org/10.1017/CBO9780511734885.002
- 82. Ben Green, Generalising the Hardy-Littlewood method for primes, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 373–399. MR 2275602
- 83. B. Green, Long arithmetic progressions of primes, submitted to Proceedings of the Gauss-Dirichlet conference, Göttingen, 2005.
- 84. Ben Green and Imre Z. Ruzsa, Freiman’s theorem in an arbitrary abelian group, J. Lond. Math. Soc. (2) 75 (2007), no. 1, 163–175. MR 2302736, https://doi.org/10.1112/jlms/jdl021
- 85. B. Green, T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. Math., to appear.
- 86. Ben Green and Terence Tao, Restriction theory of the Selberg sieve, with applications, J. Théor. Nombres Bordeaux 18 (2006), no. 1, 147–182 (English, with English and French summaries). MR 2245880
- 87.
B. Green, T. Tao, An inverse theorem for the Gowers
norm, Proc. Edin. Math. Soc., to appear.
- 88. B. Green and T. Tao, Compressions, convex geometry and the Freiman-Bilu theorem, Q. J. Math. 57 (2006), no. 4, 495–504. MR 2277597, https://doi.org/10.1093/qmath/hal009
- 89. B. Green, T. Tao, Linear equations in primes, Ann. Math., to appear.
- 90. B. Green, T. Tao, Quadratic uniformity of the Möbius function, preprint, 2006.
- 91.
B. Green, T. Tao, New bounds for Szemerédi's theorem, II. A new bound for
, preprint, 2006.
- 92. G. H. Hardy and J. E. Littlewood, Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes, Acta Math. 44 (1923), no. 1, 1–70. MR 1555183, https://doi.org/10.1007/BF02403921
- 93. G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic applications, Acta Math. 54 (1930), no. 1, 81–116. MR 1555303, https://doi.org/10.1007/BF02547518
- 94. D. R. Heath-Brown, Three primes and an almost-prime in arithmetic progression, J. London Math. Soc. (2) 23 (1981), no. 3, 396–414. MR 616545, https://doi.org/10.1112/jlms/s2-23.3.396
- 95. D. R. Heath-Brown, Integer sets containing no arithmetic progressions, J. London Math. Soc. (2) 35 (1987), no. 3, 385–394. MR 889362, https://doi.org/10.1112/jlms/s2-35.3.385
- 96. C. S. Herz, Fourier transforms related to convex sets, Ann. of Math. (2) 75 (1962), 81–92. MR 142978, https://doi.org/10.2307/1970421
- 97. Lars Hörmander, The analysis of linear partial differential operators. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1990. Distribution theory and Fourier analysis. MR 1065993
- 98. Bernard Host and Bryna Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2) 161 (2005), no. 1, 397–488. MR 2150389, https://doi.org/10.4007/annals.2005.161.397
- 99. Alex Iosevich, Curvature, combinatorics, and the Fourier transform, Notices Amer. Math. Soc. 48 (2001), no. 6, 577–583. MR 1834352
- 100. A. Iosevich, D. Hart. J. Solymosi, Sum-product estimates in finite fields, Internat. Math. Res. Notices, to appear.
- 101. S. Hofmann and A. Iosevich, Circular averages and Falconer/Erdös distance conjecture in the plane for random metrics, Proc. Amer. Math. Soc. 133 (2005), no. 1, 133–143. MR 2085162, https://doi.org/10.1090/S0002-9939-04-07603-8
- 102.
A. Iosevich, H. Jorati, I.
aba, Geometric incidence theorems via Fourier analysis, preprint, 2007.
- 103. Alex Iosevich, Nets Katz, and Terence Tao, The Fuglede spectral conjecture holds for convex planar domains, Math. Res. Lett. 10 (2003), no. 5-6, 559–569. MR 2024715, https://doi.org/10.4310/MRL.2003.v10.n5.a1
- 104. A. Iosevich and I. Łaba, 𝐾-distance sets, Falconer conjecture, and discrete analogs, Integers 5 (2005), no. 2, A8, 11. MR 2192086
- 105. J.-P. Kahane, Trois notes sur les ensembles parfaits linéaires, Enseign. Math. (2) 15 (1969), 185–192 (French). MR 245734
- 106. S. Kakeya, Some problems on minima and maxima regarding ovals, Tôhoku Science Reports, 6 (1917), 71-88.
- 107. Nets Hawk Katz, A counterexample for maximal operators over a Cantor set of directions, Math. Res. Lett. 3 (1996), no. 4, 527–536. MR 1406017, https://doi.org/10.4310/MRL.1996.v3.n4.a10
- 108. Nets Hawk Katz, Elementary proofs and the sums differences problem, Collect. Math. Vol. Extra (2006), 275–280. MR 2264213
- 109. Nets Hawk Katz, Izabella Łaba, and Terence Tao, An improved bound on the Minkowski dimension of Besicovitch sets in 𝑅³, Ann. of Math. (2) 152 (2000), no. 2, 383–446. MR 1804528, https://doi.org/10.2307/2661389
- 110. N.H. Katz, C.-Y. Shen, A slight improvement to Garaev's sum-product estimate, preprint, 2007.
- 111. N.H. Katz, C.-Y. Shen, Garaev's inequality in fields not of prime order, preprint, 2007.
- 112. Nets Hawk Katz and Terence Tao, Bounds on arithmetic projections, and applications to the Kakeya conjecture, Math. Res. Lett. 6 (1999), no. 5-6, 625–630. MR 1739220, https://doi.org/10.4310/MRL.1999.v6.n6.a3
- 113. Nets Hawk Katz and Terence Tao, Some connections between Falconer’s distance set conjecture and sets of Furstenburg type, New York J. Math. 7 (2001), 149–187. MR 1856956
- 114. Nets Hawk Katz and Terence Tao, New bounds for Kakeya problems, J. Anal. Math. 87 (2002), 231–263. Dedicated to the memory of Thomas H. Wolff. MR 1945284, https://doi.org/10.1007/BF02868476
- 115. Nets Katz and Terence Tao, Recent progress on the Kakeya conjecture, Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), 2002, pp. 161–179. MR 1964819, https://doi.org/10.5565/PUBLMAT_Esco02_07
- 116. Nets Hawk Katz and Gábor Tardos, A new entropy inequality for the Erdős distance problem, Towards a theory of geometric graphs, Contemp. Math., vol. 342, Amer. Math. Soc., Providence, RI, 2004, pp. 119–126. MR 2065258, https://doi.org/10.1090/conm/342/06136
- 117. Lawrence Kolasa and Thomas Wolff, On some variants of the Kakeya problem, Pacific J. Math. 190 (1999), no. 1, 111–154. MR 1722768, https://doi.org/10.2140/pjm.1999.190.111
- 118. M. N. Kolountzakis, Distance sets corresponding to convex bodies, Geom. Funct. Anal. 14 (2004), no. 4, 734–744. MR 2084977, https://doi.org/10.1007/s00039-004-0472-9
- 119. Bryna Kra, The Green-Tao theorem on arithmetic progressions in the primes: an ergodic point of view, Bull. Amer. Math. Soc. (N.S.) 43 (2006), no. 1, 3–23. MR 2188173, https://doi.org/10.1090/S0273-0979-05-01086-4
- 120. Izabella Laba and József Solymosi, Incidence theorems for pseudoflats, Discrete Comput. Geom. 37 (2007), no. 2, 163–174. MR 2295051, https://doi.org/10.1007/s00454-006-1279-2
- 121. I. Łaba and T. Tao, An improved bound for the Minkowski dimension of Besicovitch sets in medium dimension, Geom. Funct. Anal. 11 (2001), no. 4, 773–806. MR 1866801, https://doi.org/10.1007/PL00001685
- 122. Izabella Łaba and Thomas Wolff, A local smoothing estimate in higher dimensions, J. Anal. Math. 88 (2002), 149–171. Dedicated to the memory of Tom Wolff. MR 1956533, https://doi.org/10.1007/BF02786576
- 123. A. Leibman, Convergence of multiple ergodic averages along polynomials of several variables, Israel J. Math. 146 (2005), 303–315. MR 2151605, https://doi.org/10.1007/BF02773538
- 124. J. M. Marstrand, Packing circles in the plane, Proc. London Math. Soc. (3) 55 (1987), no. 1, 37–58. MR 887283, https://doi.org/10.1112/plms/s3-55.1.37
- 125. Jiří Matoušek, Lectures on discrete geometry, Graduate Texts in Mathematics, vol. 212, Springer-Verlag, New York, 2002. MR 1899299
- 126. Pertti Mattila, Spherical averages of Fourier transforms of measures with finite energy; dimension of intersections and distance sets, Mathematika 34 (1987), no. 2, 207–228. MR 933500, https://doi.org/10.1112/S0025579300013462
- 127. Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890
- 128. William P. Minicozzi II and Christopher D. Sogge, Negative results for Nikodym maximal functions and related oscillatory integrals in curved space, Math. Res. Lett. 4 (1997), no. 2-3, 221–237. MR 1453056, https://doi.org/10.4310/MRL.1997.v4.n2.a5
- 129. G. Mockenhaupt, Salem sets and restriction properties of Fourier transforms, Geom. Funct. Anal. 10 (2000), no. 6, 1579–1587. MR 1810754, https://doi.org/10.1007/PL00001662
- 130. Gerd Mockenhaupt, Andreas Seeger, and Christopher D. Sogge, Wave front sets, local smoothing and Bourgain’s circular maximal theorem, Ann. of Math. (2) 136 (1992), no. 1, 207–218. MR 1173929, https://doi.org/10.2307/2946549
- 131. Gerd Mockenhaupt and Terence Tao, Restriction and Kakeya phenomena for finite fields, Duke Math. J. 121 (2004), no. 1, 35–74. MR 2031165, https://doi.org/10.1215/S0012-7094-04-12112-8
- 132. A. Moyua, A. Vargas, and L. Vega, Restriction theorems and maximal operators related to oscillatory integrals in 𝐑³, Duke Math. J. 96 (1999), no. 3, 547–574. MR 1671214, https://doi.org/10.1215/S0012-7094-99-09617-5
- 133. A. Nagel, E. M. Stein, and S. Wainger, Differentiation in lacunary directions, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 3, 1060–1062. MR 466470, https://doi.org/10.1073/pnas.75.3.1060
- 134. Brendan Nagle, Vojtěch Rödl, and Mathias Schacht, The counting lemma for regular 𝑘-uniform hypergraphs, Random Structures Algorithms 28 (2006), no. 2, 113–179. MR 2198495, https://doi.org/10.1002/rsa.20117
- 135. Melvyn B. Nathanson, Additive number theory, Graduate Texts in Mathematics, vol. 165, Springer-Verlag, New York, 1996. Inverse problems and the geometry of sumsets. MR 1477155
- 136. O. Nikodym, Sur les ensembles accessibles, Fund. Math. 10 (1927), 116-168.
- 137. D. M. Oberlin and E. M. Stein, Mapping properties of the Radon transform, Indiana Univ. Math. J. 31 (1982), no. 5, 641–650. MR 667786, https://doi.org/10.1512/iumj.1982.31.31046
- 138. R. Oberlin, Two bounds on the x-ray transform, preprint, 2006.
- 139. János Pach and Pankaj K. Agarwal, Combinatorial geometry, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York, 1995. A Wiley-Interscience Publication. MR 1354145
- 140. János Pach and Micha Sharir, On the number of incidences between points and curves, Combin. Probab. Comput. 7 (1998), no. 1, 121–127. MR 1611057, https://doi.org/10.1017/S0963548397003192
- 141. János Pach (ed.), Towards a theory of geometric graphs, Contemporary Mathematics, vol. 342, American Mathematical Society, Providence, RI, 2004. MR 2065247
- 142. Julius Pál, Ein Minimumproblem für Ovale, Math. Ann. 83 (1921), no. 3-4, 311–319 (German). MR 1512015, https://doi.org/10.1007/BF01458387
- 143. D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms. I, Acta Math. 157 (1986), no. 1-2, 99–157. MR 857680, https://doi.org/10.1007/BF02392592
- 144. D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms. I, Acta Math. 157 (1986), no. 1-2, 99–157. MR 857680, https://doi.org/10.1007/BF02392592
- 145. Malabika Pramanik and Andreas Seeger, 𝐿^{𝑝} regularity of averages over curves and bounds for associated maximal operators, Amer. J. Math. 129 (2007), no. 1, 61–103. MR 2288738, https://doi.org/10.1353/ajm.2007.0003
- 146. V. Rödl, M. Schacht, Regular partitions of hypergraphs, to appear.
- 147. Vojtěch Rödl and Jozef Skokan, Regularity lemma for 𝑘-uniform hypergraphs, Random Structures Algorithms 25 (2004), no. 1, 1–42. MR 2069663, https://doi.org/10.1002/rsa.20017
- 148. Vojtěch Rödl and Jozef Skokan, Applications of the regularity lemma for uniform hypergraphs, Random Structures Algorithms 28 (2006), no. 2, 180–194. MR 2198496, https://doi.org/10.1002/rsa.20108
- 149. K. F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104–109. MR 51853, https://doi.org/10.1112/jlms/s1-28.1.104
- 150. Imre Z. Ruzsa, An application of graph theory to additive number theory, Sci. Ser. A Math. Sci. (N.S.) 3 (1989), 97–109. MR 2314377
- 151. I. Z. Ruzsa, Arithmetical progressions and the number of sums, Period. Math. Hungar. 25 (1992), no. 1, 105–111. MR 1200845, https://doi.org/10.1007/BF02454387
- 152. I. Z. Ruzsa, Generalized arithmetical progressions and sumsets, Acta Math. Hungar. 65 (1994), no. 4, 379–388. MR 1281447, https://doi.org/10.1007/BF01876039
- 153. Imre Z. Ruzsa, Additive combinatorics and geometry of numbers, International Congress of Mathematicians. Vol. III, Eur. Math. Soc., Zürich, 2006, pp. 911–930. MR 2275712
- 154. W. Schlag, On continuum incidence problems related to harmonic analysis, J. Funct. Anal. 201 (2003), no. 2, 480–521. MR 1986697, https://doi.org/10.1016/S0022-1236(03)00081-8
- 155. W. Schlag, A geometric proof of the circular maximal theorem, Duke Math. J. 93 (1998), no. 3, 505–533. MR 1626711, https://doi.org/10.1215/S0012-7094-98-09318-8
- 156. I. D. Shkredov, On a generalization of Szemerédi’s theorem, Proc. London Math. Soc. (3) 93 (2006), no. 3, 723–760. MR 2266965, https://doi.org/10.1017/S0024611506015991
- 157. Christopher D. Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Mathematics, vol. 105, Cambridge University Press, Cambridge, 1993. MR 1205579
- 158. Christopher D. Sogge, Smoothing estimates for the wave equation and applications, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 896–906. MR 1403989
- 159. J. Solymosi, A note on a question of Erdős and Graham, Combin. Probab. Comput. 13 (2004), no. 2, 263–267. MR 2047239, https://doi.org/10.1017/S0963548303005959
- 160. József Solymosi, On the number of sums and products, Bull. London Math. Soc. 37 (2005), no. 4, 491–494. MR 2143727, https://doi.org/10.1112/S0024609305004261
- 161. József Solymosi, On sum-sets and product-sets of complex numbers, J. Théor. Nombres Bordeaux 17 (2005), no. 3, 921–924 (English, with English and French summaries). MR 2212132
- 162. J. Solymosi and Cs. D. Tóth, Distinct distances in the plane, Discrete Comput. Geom. 25 (2001), no. 4, 629–634. The Micha Sharir birthday issue. MR 1838423, https://doi.org/10.1007/s00454-001-0009-z
- 163. József Solymosi and Csaba D. Tóth, Distinct distances in homogeneous sets in Euclidean space, Discrete Comput. Geom. 35 (2006), no. 4, 537–549. MR 2225673, https://doi.org/10.1007/s00454-006-1232-4
- 164. József Solymosi and Van Vu, Distinct distances in high dimensional homogeneous sets, Towards a theory of geometric graphs, Contemp. Math., vol. 342, Amer. Math. Soc., Providence, RI, 2004, pp. 259–268. MR 2065269, https://doi.org/10.1090/conm/342/06146
- 165. K. Soundararajan, Small gaps between prime numbers: the work of Goldston-Pintz-Yıldırım, Bull. Amer. Math. Soc. (N.S.) 44 (2007), no. 1, 1–18. MR 2265008, https://doi.org/10.1090/S0273-0979-06-01142-6
- 166. J. Spencer, E. Szemerédi, and W. Trotter Jr., Unit distances in the Euclidean plane, Graph theory and combinatorics (Cambridge, 1983) Academic Press, London, 1984, pp. 293–303. MR 777185
- 167. Elias M. Stein, Maximal functions. I. Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2174–2175. MR 420116, https://doi.org/10.1073/pnas.73.7.2174
- 168. E. M. Stein, Oscillatory integrals in Fourier analysis, Beijing lectures in harmonic analysis (Beijing, 1984) Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 307–355. MR 864375
- 169. Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- 170. Robert S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705–714. MR 512086
- 171. László A. Székely, Crossing numbers and hard Erdős problems in discrete geometry, Combin. Probab. Comput. 6 (1997), no. 3, 353–358. MR 1464571, https://doi.org/10.1017/S0963548397002976
- 172. E. Szemerédi, On sets of integers containing no four elements in arithmetic progression, Acta Math. Acad. Sci. Hungar. 20 (1969), 89–104. MR 245555, https://doi.org/10.1007/BF01894569
- 173. E. Szemerédi, On sets of integers containing no 𝑘 elements in arithmetic progression, Acta Arith. 27 (1975), 199–245. MR 369312, https://doi.org/10.4064/aa-27-1-199-245
- 174. E. Szemerédi, Integer sets containing no arithmetic progressions, Acta Math. Hungar. 56 (1990), no. 1-2, 155–158. MR 1100788, https://doi.org/10.1007/BF01903717
- 175. Endre Szemerédi and William T. Trotter Jr., Extremal problems in discrete geometry, Combinatorica 3 (1983), no. 3-4, 381–392. MR 729791, https://doi.org/10.1007/BF02579194
- 176. T. Tao, A sharp bilinear restrictions estimate for paraboloids, Geom. Funct. Anal. 13 (2003), no. 6, 1359–1384. MR 2033842, https://doi.org/10.1007/s00039-003-0449-0
- 177. T. Tao, Recent progress on the restriction conjecture, to appear in Park City conference proceedings.
- 178. Terence Tao, Arithmetic progressions and the primes, Collect. Math. Vol. Extra (2006), 37–88. MR 2264205
- 179. Terence Tao, A variant of the hypergraph removal lemma, J. Combin. Theory Ser. A 113 (2006), no. 7, 1257–1280. MR 2259060, https://doi.org/10.1016/j.jcta.2005.11.006
- 180. T. Tao, The dichotomy between structure and randomness, arithmetic progressions, and the primes, Proceedings of the International Congress of Mathematicians, Vol. I, Eur. Math. Soc., Zürich, 2006.
- 181. Terence Tao, Nonlinear dispersive equations, CBMS Regional Conference Series in Mathematics, vol. 106, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. Local and global analysis. MR 2233925
- 182. T. Tao, What is good mathematics?, Bull. Amer. Math. Soc. 44 (2007), 623-634.
- 183. T. Tao, Norm convergence of multiple ergodic averages for commuting transformations, preprint, 2007.
- 184. Terence Tao, Ana Vargas, and Luis Vega, A bilinear approach to the restriction and Kakeya conjectures, J. Amer. Math. Soc. 11 (1998), no. 4, 967–1000. MR 1625056, https://doi.org/10.1090/S0894-0347-98-00278-1
- 185. T. Tao and A. Vargas, A bilinear approach to cone multipliers. I. Restriction estimates, Geom. Funct. Anal. 10 (2000), no. 1, 185–215. MR 1748920, https://doi.org/10.1007/s000390050006
- 186. T. Tao and A. Vargas, A bilinear approach to cone multipliers. II. Applications, Geom. Funct. Anal. 10 (2000), no. 1, 216–258. MR 1748921, https://doi.org/10.1007/s000390050007
- 187. Terence Tao and Van Vu, Additive combinatorics, Cambridge Studies in Advanced Mathematics, vol. 105, Cambridge University Press, Cambridge, 2006. MR 2289012
- 188. T. Tao, T. Ziegler, The primes contain arbitrarily long polynomial progressions, Acta Math., to appear.
- 189. Peter A. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975), 477–478. MR 358216, https://doi.org/10.1090/S0002-9904-1975-13790-6
- 190. Peter A. Tomas, Restriction theorems for the Fourier transform, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 111–114. MR 545245
- 191. J. G. van der Corput, Über Summen von Primzahlen und Primzahlquadraten, Math. Ann. 116 (1939), no. 1, 1–50 (German). MR 1513216, https://doi.org/10.1007/BF01597346
- 192. Norbert Wiener, The ergodic theorem, Duke Math. J. 5 (1939), no. 1, 1–18. MR 1546100, https://doi.org/10.1215/S0012-7094-39-00501-6
- 193. Thomas Wolff, An improved bound for Kakeya type maximal functions, Rev. Mat. Iberoamericana 11 (1995), no. 3, 651–674. MR 1363209, https://doi.org/10.4171/RMI/188
- 194. Thomas Wolff, A Kakeya-type problem for circles, Amer. J. Math. 119 (1997), no. 5, 985–1026. MR 1473067
- 195. Thomas Wolff, A mixed norm estimate for the X-ray transform, Rev. Mat. Iberoamericana 14 (1998), no. 3, 561–600. MR 1681585, https://doi.org/10.4171/RMI/245
- 196. Thomas Wolff, Decay of circular means of Fourier transforms of measures, Internat. Math. Res. Notices 10 (1999), 547–567. MR 1692851, https://doi.org/10.1155/S1073792899000288
- 197. Thomas Wolff, Recent work connected with the Kakeya problem, Prospects in mathematics (Princeton, NJ, 1996) Amer. Math. Soc., Providence, RI, 1999, pp. 129–162. MR 1660476
- 198. T. Wolff, Local smoothing type estimates on 𝐿^{𝑝} for large 𝑝, Geom. Funct. Anal. 10 (2000), no. 5, 1237–1288. MR 1800068, https://doi.org/10.1007/PL00001652
- 199. Thomas Wolff, A sharp bilinear cone restriction estimate, Ann. of Math. (2) 153 (2001), no. 3, 661–698. MR 1836285, https://doi.org/10.2307/2661365
- 200. Thomas H. Wolff, Lectures on harmonic analysis, University Lecture Series, vol. 29, American Mathematical Society, Providence, RI, 2003. With a foreword by Charles Fefferman and a preface by Izabella Łaba; Edited by Łaba and Carol Shubin. MR 2003254
- 201. Tamar Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc. 20 (2007), no. 1, 53–97. MR 2257397, https://doi.org/10.1090/S0894-0347-06-00532-7
Retrieve articles in Bulletin (New Series) of the American Mathematical Society with MSC (2000): 11B25, 11B75, 11L07, 28A75, 28A78, 42B15, 42B20, 42B25, 52C10
Retrieve articles in all journals with MSC (2000): 11B25, 11B75, 11L07, 28A75, 28A78, 42B15, 42B20, 42B25, 52C10
Additional Information
Izabella Laba
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, B.C. V6T 1Z2, Canada
Email:
ilaba@math.ubc.ca
DOI:
https://doi.org/10.1090/S0273-0979-07-01189-5
Received by editor(s):
May 28, 2007
Published electronically:
October 17, 2007
Additional Notes:
This article is based on lectures presented at the Winter 2004 meeting of the Canadian Mathematical Society, Montreal, December 2004; the MSRI workshop “Women in Mathematics: The Legacy of Ladyzhenskaya and Oleinik”, Berkeley, May 2006; the Fall 2006 Western Section meeting of the American Mathematical Society, Salt Lake City, October 2006; the AMS Current Events Bulletin Session, Joint Mathematics Meetings, New Orleans, January 2007; and the Pennsylvania State University, State College, April 2007.
The author is supported in part by an NSERC Discovery Grant.
Article copyright:
© Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.