Finding meaning in error terms
HTML articles powered by AMS MathViewer
- by Barry Mazur PDF
- Bull. Amer. Math. Soc. 45 (2008), 185-228 Request permission
References
- James Arthur and Laurent Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Mathematics Studies, vol. 120, Princeton University Press, Princeton, NJ, 1989. MR 1007299
- Shigeki Akiyama and Yoshio Tanigawa, Calculation of values of $L$-functions associated to elliptic curves, Math. Comp. 68 (1999), no. 227, 1201–1231. MR 1627842, DOI 10.1090/S0025-5718-99-01051-0 CHT Clozel, L., Harris, M., Taylor, R.: Automorphy for some $\ell$-adic lifts of automorphic mod $\ell$ representations (preprint), http://www.math.harvard.edu/$\sim$rtaylor/.
- James W. Cogdell and Ilya I. Piatetski-Shapiro, Remarks on Rankin-Selberg convolutions, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 255–278. MR 2058610
- J. E. Cremona, Algorithms for modular elliptic curves, Cambridge University Press, Cambridge, 1992. MR 1201151
- Harold Davenport, Multiplicative number theory, 3rd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000. Revised and with a preface by Hugh L. Montgomery. MR 1790423
- Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307 (French). MR 340258, DOI 10.1007/BF02684373
- Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520, DOI 10.1007/BF02684780
- Fred Diamond and Jerry Shurman, A first course in modular forms, Graduate Texts in Mathematics, vol. 228, Springer-Verlag, New York, 2005. MR 2112196 Dieul Dieulefait, L.: The level $1$ case of Serre’s conjecture revisited, preprint, ArXiv:0705.0457v1 (2007).
- Noam D. Elkies, The existence of infinitely many supersingular primes for every elliptic curve over $\textbf {Q}$, Invent. Math. 89 (1987), no. 3, 561–567. MR 903384, DOI 10.1007/BF01388985
- Noam D. Elkies, Distribution of supersingular primes, Astérisque 198-200 (1991), 127–132 (1992). Journées Arithmétiques, 1989 (Luminy, 1989). MR 1144318
- Jean-Marc Fontaine and Barry Mazur, Geometric Galois representations, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993) Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 41–78. MR 1363495
- Stephen Gelbart and Hervé Jacquet, A relation between automorphic representations of $\textrm {GL}(2)$ and $\textrm {GL}(3)$, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 471–542. MR 533066, DOI 10.24033/asens.1355
- Andrew Granville and Greg Martin, Prime number races, Amer. Math. Monthly 113 (2006), no. 1, 1–33. MR 2202918, DOI 10.2307/27641834
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR 568909 Har Harris, M.: Potential automorphy of odd-dimensional symmetric powers of elliptic curves, and applications. To appear in Algebra, Arithmetic, and Geometry—Manin Festschrift, Birkhäuser (in press.) HSBT Harris, M., Shepherd-Barron, N., Taylor, R.: Ihara’s lemma and potential automorphy (preprint), http://www.math.harvard.edu/$\sim$rtaylor/.
- Helmut Hasse, Mathematische Abhandlungen. Band 1, Walter de Gruyter, Berlin-New York, 1975 (German). Herausgegeben von Heinrich Wolfgang Leopoldt und Peter Roquette. MR 0465756
- H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), no. 2, 367–464. MR 701565, DOI 10.2307/2374264
- Nicholas M. Katz, An overview of Deligne’s proof of the Riemann hypothesis for varieties over finite fields, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974) Amer. Math. Soc., Providence, R.I., 1976, pp. 275–305. MR 0424822
- Nicholas M. Katz and Peter Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, American Mathematical Society Colloquium Publications, vol. 45, American Mathematical Society, Providence, RI, 1999. MR 1659828, DOI 10.1090/coll/045
- Chandrashekhar Khare, Serre’s modularity conjecture: the level one case, Duke Math. J. 134 (2006), no. 3, 557–589. MR 2254626, DOI 10.1215/S0012-7094-06-13434-8 KW Khare, C., Wintenberger, J-P.: On Serre’s reciprocity conjecture for $2$-dimensional mod $p$ representations of the Galois group of $\mathbf {Q}$, preprint (2004); available at: www.arxiv.org.
- Henry H. Kim, Functoriality for the exterior square of $\textrm {GL}_4$ and the symmetric fourth of $\textrm {GL}_2$, J. Amer. Math. Soc. 16 (2003), no. 1, 139–183. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. MR 1937203, DOI 10.1090/S0894-0347-02-00410-1
- Henry H. Kim and Freydoon Shahidi, Cuspidality of symmetric powers with applications, Duke Math. J. 112 (2002), no. 1, 177–197. MR 1890650, DOI 10.1215/S0012-9074-02-11215-0
- Henry H. Kim and Freydoon Shahidi, Functorial products for $\textrm {GL}_2\times \textrm {GL}_3$ and the symmetric cube for $\textrm {GL}_2$, Ann. of Math. (2) 155 (2002), no. 3, 837–893. With an appendix by Colin J. Bushnell and Guy Henniart. MR 1923967, DOI 10.2307/3062134 Ki Kisin, M.: Moduli of finite flat group schemes and modularity, preprint (2004). Ki2 Kisin, M.: Modularity of $2$-adic Barsotti-Tate representations, preprint (2006). Ki1 Kisin, M.: The Fontaine-Mazur conjecture for $\textrm {GL}_2$, preprint (2006).
- Jacob Korevaar, Tauberian theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 329, Springer-Verlag, Berlin, 2004. A century of developments. MR 2073637, DOI 10.1007/978-3-662-10225-1
- Serge Lang, Algebraic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994. MR 1282723, DOI 10.1007/978-1-4612-0853-2
- Serge Lang, Math talks for undergraduates, Springer-Verlag, New York, 1999. MR 1697559, DOI 10.1007/978-1-4612-1476-2
- Serge Lang and Hale Trotter, Frobenius distributions in $\textrm {GL}_{2}$-extensions, Lecture Notes in Mathematics, Vol. 504, Springer-Verlag, Berlin-New York, 1976. Distribution of Frobenius automorphisms in $\textrm {GL}_{2}$-extensions of the rational numbers. MR 0568299, DOI 10.1007/BFb0082087
- Robert P. Langlands, Euler products, Yale Mathematical Monographs, vol. 1, Yale University Press, New Haven, Conn.-London, 1971. A James K. Whittemore Lecture in Mathematics given at Yale University, 1967. MR 0419366
- Robert P. Langlands, On the functional equations satisfied by Eisenstein series, Lecture Notes in Mathematics, Vol. 544, Springer-Verlag, Berlin-New York, 1976. MR 0579181, DOI 10.1007/BFb0079929
- J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem, Algebraic number fields: $L$-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London, 1977, pp. 409–464. MR 0447191 M Mazur, B.: Controlling Our Errors, Nature 443, 7 (2006) 38-40.
- A. P. Ogg, A remark on the Sato-Tate conjecture, Invent. Math. 9 (1969/70), 198–200. MR 258835, DOI 10.1007/BF01404324 R Riemann, G. F. B.: Über die Anzahl der Primzahlen unter einer gegebenen Grösse. Monatsber. Königl. Preuss. Akad. Wiss. Berlin (1859) 671-680.
- Michael Rubinstein and Peter Sarnak, Chebyshev’s bias, Experiment. Math. 3 (1994), no. 3, 173–197. MR 1329368, DOI 10.1080/10586458.1994.10504289
- Jean-Pierre Serre, Abelian $l$-adic representations and elliptic curves, W. A. Benjamin, Inc., New York-Amsterdam, 1968. McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute. MR 0263823
- Jean-Pierre Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323–401 (French). MR 644559 S3 Serre, J-P.: Letter to F. Shahidi, January 24, 1992; Appendix (pp. 175-180) in reference 48.
- Jean-Pierre Serre, Propriétés conjecturales des groupes de Galois motiviques et des représentations $l$-adiques, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 377–400 (French). MR 1265537
- Freydoon Shahidi, On certain $L$-functions, Amer. J. Math. 103 (1981), no. 2, 297–355. MR 610479, DOI 10.2307/2374219
- Freydoon Shahidi, On the Ramanujan conjecture and finiteness of poles for certain $L$-functions, Ann. of Math. (2) 127 (1988), no. 3, 547–584. MR 942520, DOI 10.2307/2007005
- Freydoon Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for $p$-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273–330. MR 1070599, DOI 10.2307/1971524
- Freydoon Shahidi, Symmetric power $L$-functions for $\textrm {GL}(2)$, Elliptic curves and related topics, CRM Proc. Lecture Notes, vol. 4, Amer. Math. Soc., Providence, RI, 1994, pp. 159–182. MR 1260961, DOI 10.1090/crmp/004/11
- Freydoon Shahidi, Twists of a general class of $L$-functions by highly ramified characters, Canad. Math. Bull. 43 (2000), no. 3, 380–384. MR 1776066, DOI 10.4153/CMB-2000-045-1
- Freydoon Shahidi, Langlands-Shahidi method, Automorphic forms and applications, IAS/Park City Math. Ser., vol. 12, Amer. Math. Soc., Providence, RI, 2007, pp. 299–330. MR 2331347, DOI 10.1090/pcms/012/06
- Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1992. Corrected reprint of the 1986 original. MR 1329092, DOI 10.1007/978-1-4757-4252-7
- John T. Tate, Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963) Harper & Row, New York, 1965, pp. 93–110. MR 0225778 Tay Taylor, R.: Automorphy for some $\ell$-adic lifts of automorphic mod $\ell$ representations. II (preprint). http://www.math.harvard.edu/$\sim$rtaylor/.
- Helge von Koch, Sur la distribution des nombres premiers, Acta Math. 24 (1901), no. 1, 159–182 (French). MR 1554926, DOI 10.1007/BF02403071
- André Weil, Variétés abéliennes et courbes algébriques, Publ. Inst. Math. Univ. Strasbourg, vol. 8, Hermann & Cie, Paris, 1948 (French). MR 0029522
Additional Information
- Barry Mazur
- Affiliation: Department of Mathematics, Harvard University, One Oxford Street, Cambridge, Massachusetts 02138-2901
- MR Author ID: 121915
- ORCID: 0000-0002-1748-2953
- Received by editor(s): September 9, 2007
- Published electronically: February 6, 2008
- Additional Notes: Part I of this article was presented in the Current Events Bulletin section of the winter meeting of the AMS on January 7, 2007, in New Orleans. The title of the talk was “The structure of error terms in number theory and an introduction to the Sato-Tate Conjecture”. Part I and some of Part II were published in the Current Events Bulletin of the AMS that was distributed at the meeting.
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Bull. Amer. Math. Soc. 45 (2008), 185-228
- MSC (2000): Primary 11-02, 11F03, 11F80, 11G05, 11G40
- DOI: https://doi.org/10.1090/S0273-0979-08-01207-X
- MathSciNet review: 2383303
Dedicated: In memory of Serge Lang