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“Integrable Systems” has become a field of mathematics in relatively recent times
(triggering frequent additions to the Mathematics Subject Classification), one with
the odd distinction that a definition of integrability is still lacking. The reason for
this elusiveness and also for much of the fast hold the field is enjoying on (applied)
mathematics and physics is that nonlinear PDEs typically don’t have “exact” solu-
tions (elementary or special functions, e.g., elliptic, hypergeometric) and of course
the solution space is infinite-dimensional. Classes of “integrable” PDEs with special
properties were identified, beginning in the 1960s; there is still no way to predict
whether your equation will be integrable, but those that are seem to enjoy an ex-
traordinarily beautiful mathematical structure. Uncovering such structure in the
attempt at finding defining properties of, and tests for, integrability brought to light
new mathematical constructions which span classical to futuristic interdisciplinary
areas. Not surprisingly, then, this part of the mathematical sciences is one that has
seen the largest growth in the number of publications (the book under review comes
with a reference list which, though complete, is limited to the pertinent topics and
contains 800+ items), and texts are now available to give the field some rooting and
the newcomer some means to handle the necessary tools in a comprehensive way.
Most of the texts that succeed have chosen one specific viewpoint and technique;
the present one is of this kind and quite unique in its choice.

The reason for this review is that this is the ‘first’ text to treat algebro-geometric
integration married in a deep way to spectral theory and classical analysis: it is this
choice that gives this area of the elusive integrability field a definitive completeness
(which does not mean there aren’t plenty of open problems in the book). This
review is not as timely as it should have been (my regrets!), but there still seems to
be a reason for it: this book is the first of three, the second is near completion, and
I will try to provide scope for the whole series (Volume I treats the “hyperelliptic”
case, which in applied math translates into holonomic D-modules or the evolution
of one spatial dimension, (1 4 1) in the title; Volume II is planned to address the
discrete case or (differential-)difference equations; and Volume III is to include the
non-hyperelliptic, subholonomic case, (2 4+ 1) for 2 spatial dimensions). The 2006
AMS Leroy P. Steele Prize for a Seminal Contribution to Research was awarded to
the authors of the paper [GGKM]; the citation reads: “This is a fundamental paper
in the theory of solitons, inverse scattering transforms, and nonlinear completely
integrable systems. Before it, there was no general theory for the exact solution of
any important class of nonlinear differential equations. ... In applications of mathe-
matics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers)
have entered and changed such diverse fields as nonlinear optics, plasma physics,
and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a rev-
olution: from a nuisance to be eliminated, to a new tool to be exploited.” Indeed,
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the Princeton lab where the word soliton was coined in the mid-1960s is where our
journey begins (for a more extensive account of the history of this subject, see the
wonderful article [P] in this Bulletin).

The word soliton is used loosely to refer to (traveling) solitary waves that regain
their individual shape and velocity after non-linear superposition. This phenome-
non was identified through computer simulation—the work of C.S. Gardner, J.M.
Greene, M.D. Kruskal, R.M. Miura, C.H. Su, and N.J. Zabusky. The nonlinear
evolution equation observed was the Korteweg-de Vries equation ([KDV], though
it appeared earlier [B]),

U — 6UUL + Ugzr = 0.

Exact solutions were found in the 19th century under the one-wave ansatz: u(x,t) =
u(x — ct) because of the minor miracle of repeated integration (with arbitrary
constants a, b) into:

(u/)Q 2

> :u3+c%—au+b,

the equation of the Weierstrass p function, up to linear transformation u = 2p +
const., or its singular trigonometric and exponential limits for particular values of
a,b. The Princeton group paired two one-wave solutions and observed that a nu-
merical solution, after looking all lumpy for a while, asymptotically regained exactly
the 2-peak shape with a shift in phase. This suggested the “hidden symmetry” of
more conservation laws than the obvious energy. The next stage of the journey
sees extraordinary geographic breadth and insight, notably of L.D. Faddeev, P.D.
Lax, S.P. Novikov, Mikio Sato, who were among the leaders of the mathematical
teams at the major centers of activity, familiarly referred to as the “St. Petersburg
school”, the “New York school”, the “Moscow school”, the “Kyoto school” (though
many others made fundamental contributions, including applied mathematicians
and physicists). In a way, the end of the journey was reached with the discovery
of the structure shared by the integrable equations, to wit, the abelian sum all
over again, as in the case of the simple pendulum. Algebraic tori, the venue of
complete integrability, and action-angle variables were responsible for the stability
of the solitons, one of the new powerful features being that the tori were infinite di-
mensional. Sato’s Grassmannian and its determinant bundle became a “universal”
setting where moduli spaces of curves (or maps or bundles) of arbitrary genus could
be mapped and made to interact; this suited string theory, conformal blocks, sta-
tistical mechanics (lattice theory), stochastic processes (Brownian motion, random
matrices), and more.

There weren’t, however, soliton texts based on spectral theory that provided the
equipment and the specificity to encompass all the “algebro-geometric solutions”.
The algebraic nature of the spectral data was developed in [GD], but the algebro-
geometric class appeared in an unrelated way, as we see next.

What is a spectral curve? A spectral curve, like most interesting objects, has
many manifestations, but for the sake of brevity we sketch the more analytic and
algebraic ones. If the operator L has an honest spectral class and depends on a
parameter ¢ according to a Lax pair 9;L = [B, L] for an operator B that can be ‘in-
tegrated’ on a group of transformations by a unitary operator U: B = U;U ™!, then
the Lax pair is the infinitesimal (Lie-algebra) action of the flow: L(t) = UL(0)U !,
which preserves the spectrum of L. At least formally, this is an explanation for
the conserved quantities (the eigenvalues of L), and this approach was developed
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rigorously for certain classes of potentials (e.g., periodic or rapidly vanishing on
the line). That there should be a curve of such spectral values is a little bit more
mysterious. Switch buzzwords to “non-linear Fourier transform”. With a KdV

solution u(x,t) in mind, take L to be the Schrédinger operator L = —% —u(x,1).
Writing henceforth 9 = % instead of %, one can give the Lax-pair deformation

above by B = —40% — 3(ud + du). A point A in the spectrum corresponds to an
eigenfunction, Ly = A\, whose asymptotic behavior (don’t ask yet!) is etA?
(Had L been a partial differential operator in two variables, x and y, say, one might
have looked for an eigensurface parametrized by A, u, say, but that’s material for
another three books.) The geometric data corresponding to the eigenfunction are
of a deeply different nature, depending on the class of potentials studied; this is
why we put off the question “asymptotic where?” For the rapidly vanishing class,
it is the asymptotics as £ — 400 on the real line that provide “scattering data”,
the surprise of their simple dependence on ¢ (polynomial in fact), and trace for-
mulas to recover the potential u(z,t), yielding (if all the auspicious assumptions
hold) an ezact KdV solution. The Riemann-Hilbert problem, namely connecting
eigenfunctions across the real A'/2 axis, completes the geometry, and again under
favorable circumstances there is a global eigenfunction on a Riemann surface (of
possibly infinite genus) that covers the A'/2-plane.

But it is the periodic case that we address here. In that case the geometric
data that allow us to recover the potential are encoded in the asymptotics of the
eigenfunction in A. How can that be?

It is perhaps best, rather than conjuring up the magic words “Fourier-Mukai
transform”, to make a ‘formal’ excursion, especially since the underlying repre-
sentation-theoretic aspect is not covered in this book. It was the insight of Sato
that unified the analytic and algebraic, in fact “all”’, solutions into the universal
Grassmann manifold [S]. He defined the spectral curve as the spectrum (in the
sense of algebraic geometry—nothing technical, simply points corresponding to
the maximal ideals, de facto their complex coordinates) of the ring D of (formal)
differential operators that commute with the (formal) pseudo-differential operator
LY2,D = {377 u;(2)d, u; a formal power series in z} C P = {37 u;(2)d7},
with operations: dou = ud+u/, 0 tou =ud" ' =0 2+u"072—.... Noting that
the automorphisms of D are generated by a change of variable and conjugation by
a function, we normalize any L € D of order n:

L=0"+u, 2(x)0" 2+ ... +ug(z),

and there is a unique n-th root: £ = 0 4+ u_1072 4 ... € P which plays the role
of a local parameter on the curve at a smooth point. The KdV hierarchy can be
viewed as the isospectral deformations of the ring that centralizes the Schrodinger
L, which are all defined by compatible Lax pairs:

O, £ = [(L™), L],

It was then natural to define the more general KP hierarchy. Introduce param-
eters t = (t1 = x,t2,t3,...), and the deformations

00, £ = (L), L],

where ( )4 is projection P — D, are then a set of PDEs on w;(t), which turn out
to be commuting Hamiltonian flows. The first non-trivial PDE, for z = ¢, y =
to, t = t3, is another equation (KP) that had been encountered in physics, modeled
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first by Kadomtsev and Petviashvili; moreover, the KP equation reduces to both
the KdV and the Boussinesq equations, respectively, when the solution happens to
be “stationary” (L7 € D(= 0;,L = 0)) with respect to t, t3, respectively:

%Uyy = (uy — %umzm - %uum)m (KP)

9s=0 94=0
4up — Ugge — Buuy, =0 (KdV) 3Uyy + Ugee + 6uu, =0 (Boussinesq).

At first sight, these centralizer rings do not have much structure: a powerful
result of Sato (proved earlier by I.M. Krichever in the algebro-geometric context)
says that any commutative subring of P can be simultaneously conjugated into
a subring of Py = {>."__¢;07}, constant-coefficient operators. In a short paper
published as early as 1905, I. Schur proved that the centralizer of a differential
operator in D is in fact simply {Zivoo ¢;L7 € P, ¢j € CyND. This ring carries the
geometric structure; it no longer is necessarily isomorphic to a polynomial ring Clx]
(though it is for most operators). At the same time, being a ring of transcendence
degree one over C, it is the ring of an affine algebraic curve.

We’ve reached harbor: another strikingly early result of J.L. Burchnall and T.W.
Chaundy (1923), elementary in nature, says that any two commutative ordinary
differential operators satisfy (identically in the variable x) a polynomial equation:
thus, the “spectral curve”!

From this point of view, rather close to that of the nineteenth century, results
have a double nature in algebra and spectral theory. More detail when we discuss
the present book’s content. Here we complete our bird’s-eye view of the field by
using the Fourier duality between x and z to transition back to the z variable.

The ‘trivial’ situation of a constant-coefficients operator (equivalently, the cen-
tralizer is spanned by all the powers of £) is coded into the general one by the
“Sato operator” S: L = S0S~!, so ¢ = Se™ is an eigenfunction (“Baker—or
Baker-Akhiezer—function”, for historical reasons) of £ with eigenvalue z, which
turns differentiation into multiplication, 8! <> z. This enables us to work with
an (infinite-dimensional) Grassmann manifold, the subspaces W of a Hilbert space
H = L?(S',C) which are “comparable” to Hy = {3 " ¢;2/ € H} (in Sato’s for-
mal version the condition is finite-dimensionality of certain quotient spaces). We
denote by Gr? the big cell, where by definition the projection 7 : H — H, is an
isomorphism.

There is a 1:1 correspondence between elements of Gr? and D-submodules Z of P
that are cyclic, Z = DS, equivalently split P = Z&P(—1, through the assignments:

IT—W = Sillpégr)]st = {'U € Peonst : Iv C P(E(?I)]St )
WisT={AecP: AW c PO 1,

where Peonst, the constant-coefficient operators, are equipped with the filtration by
order ’P,Eir)lst. Now each element of Gr’ corresponds uniquely to its Baker function,
the inverse image of 1 under 7. To understand the geometric interpretation of the
KP flows on the Grassmannian, Sato used “Pliicker coordinates” (suitable minors
of infinite-size matrices), devised a generating function for them (the seemingly
omnipresent “tau function”), and proved his crowning result: the KP hierarchy
is nothing but the Pliicker equations, a generalization of the classical quadratic

equations that cut out the image of the Pliicker embedding of Gr(k,n) in projective



BOOK REVIEWS 463

space P(i)=1. The hierarchy is linear on the Grassmannian in the sense that the
subspaces corresponding to S(t1, to, ...) are W(t) = et +t2=*+ T/ Ag a passing nod
to the vast contribution made by representation theorists to integrable equations
and a foray into Volume II, where the Toda Lattice,

Wi pe = exp(w;—1 —w;) —exp(w; — wiq1), i=1,---,n,
n
E w; =0, wo=wp, Wnpt1 =wi,
=1

will take center stage, we connect the two by mentioning that Toda likewise lin-
earizes on a vector Grassmannian under the action of the loop group of SL(n,C).
The flow on the Grassmannian is now generated by the positive part of the Heisen-
berg algebra H,, as follows. A map f : S — Gl,(C) is written, by an infinite-
dimensional version of the Birkhoff decomposition, as a product f = fTAf~ of a
homomorphism A and maps f* that extend holomorphically to the interior and
exterior of S C C U {oo} = S2, respectively. The action (“dressing transforma-
tion”) is defined by factoring a product ff~ in the opposite order. The space of
solutions is the orbit of a group action, which in turn lends itself to integration by
symplectic reduction. But this is for another review.

This then is the story of the soliton, if you will, told by someone biased towards
algebraic geometry: the two algebraic varieties that were classically best under-
stood, namely abelian varieties (more specifically Jacobians of Riemann surfaces)
and Grassmannians, are the milieu of integrable hierarchies (you may think you
are not seeing the Jacobian inside the Grassmannian, but it is encoded via the
“Krichever map”, which associates to a line bundle E the subspace W of its local
sections near z = 0o, most sketchily speaking). The puzzle of “unreasonable effec-
tiveness” has been clarified, if not explained; why is it that the PDEs of ‘nature’,
when expanded in what some view as an analog of the “normal form” of Hamilton-
ian systems, have first approximation which is an integrable equation in the sense
of belonging to a linear hierarchy? Perhaps because “a lot of what we see comes
from the glasses we put on” [H]. Be that as it may, soliton equations have brought
about, and together, a truly unreasonable number of things.

The algebraic Ansatz. As a segue into the book at hand, let’s pause to see how,
within the context of an infinite-dimensional Grassmannian, the finite-dimensional
Jacobian still might host the whole hierarchy. This is for the special solutions (initial
conditions) which are “algebro geometric”. Again, only one (basically because of
the one-dimensionality of the spectral variety) relation suffices: let K; = (£7)4
and say that a KP solution is stationary if a non-trival combination Zf[ c; LI € D
i.e., the corresponding time operator ZJIV ¢; K acts trivially. A technical proviso
is important: the greatest common divisor of the orders of the operators giving
rise to stationary flows has to be 1 (this is commonly referred to as the “rank 1”
condition).

It turns out (again the exposition here leaves out lots of technical provisos)
that this is equivalent to an exquisitely algebraic question asked by Burchnall and
Chaundy: in the slightly less formal ring D = {E;;O u;(2)d7, uj analytic near x =
0}, which L’s have centralizer Cp(L) larger than a polynomial ring C[L4], L; € D?
The rank-one condition says that the orders of the operators in the centralizer
should be coprime. Ince’s classical ODE result gives a feeling for the depth of the
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problem: the Lamé operator L = —8%+a(a+1)p(z—x0) with real, smooth potential
is finite-gap iff a € Z (if a is positive, the spectral curve has genus a). To give a taste
for the techniques of the authors of the book under review, we pursue this example
for a moment in the rather unique treatment of the first author with R. Weikard:
they give a necessary and sufficient condition for an operator L = d?/dz? + q(z)
(where x € C, ¢ is meromorphic doubly periodic) to be finite-gap by extending a
theorem of Picard; the condition is that ¢ be what they term a “Picard potential”,
i.e., admit a fundamental system of meromorphic solutions of " + gy = E4 for
any F € C.

The book at hand takes this analytic approach to algebro-geometric solutions of
soliton equations. Its nature as a consequence is rather unique in the literature and
it is twofold. On one hand, it is again purely algebraic, because to stay within the
finite genus context, one starts with the infinite sequence of conserved quantities
of KAV (for example), which have come to be viewed as commuting Hamiltonians
on an infinite-dimensional Poisson manifold (but that’s for another review, remem-
ber?). But it can be phrased in analytic terms as well, the algebraic objects being
interwoven in asymptotic expansions (not their truncation!) of Green’s functions,
kernels, and Fredholm determinants associated to the spectrum, rather than holo-
morphic differentials on the spectral curve and linear flows on the Jacobian.

KdV is defined by recursive time evolutions:

utn = [P2n+1)L} = 2f7L+17$)

where fo =1, fi. = —ifl,l’zm +ufi_1.+ %uxfl,l are differential polynomials
in the smooth, complex-valued function u. The analytic origin of these polyno-
mials is seen by expanding (in the spectral parameter) the Green’s function—the
kernel of the resolvent (L — \)~!, appeared previously in work of R. Schimming.
The solutions are algebro-geometric if and only if a constant-coefficient combina-
tion of a finite number of time evolutions is zero, and the authors transparently
interpret this Ansatz (appearing previously in work of S.J. Alber) in terms of the
Burchnall-Chaundy theory, which they call “stationary” KdV. Joint eigenfunctions
have poles on a divisor of the spectral curve that parametrizes isospectral defor-
mations and zeros on divisors whose coordinates satisfy the “Dubrovin equations”;
trace formulas are available to recover the coefficients of the operators in terms
of the theta function of the curve by integrating the Dubrovin equations, both as
dependent on z and on the time hierarchy ¢,,. Again, the analytic way to see the
auxiliary divisor (the zeros of the joint eigenfunction, the Baker function redux) is
available in the special case when the potential u(x) is periodic; poles and zeros
are then natural normalizations of spectral data, namely the spectra for the Neu-
mann and Dirichlet boundary conditions. In fact, I have seen only in this book the
most general interpolating boundary conditions for a (normalized) eigenfunction
g(x) of L (the t-dependence is omitted in this notation, since it is isospectral when
KdV is satisfied). The condition is: ¢'(z) + fg(x) = 0, £ € R, the case of £ = oo
and ¢ = 0 defining respectively the Dirichlet and Neumann spectra. The KdV
dynamics is reduced to a system of ordinary differential equations for the points
AGs - - -, Ap of the spectrum. Trace formulas give: 20% —u = ZZ o€ —22.7 4

where e, ...,es, are the simple points of the (anti-)periodic spectrum, a ﬁmte
number in the algebraic ansatz. Theta-function theory settles the ‘direct’ spectral
problem: u(z) = S22 e, — 239 i — 20%log I(K + A(X9_y \) + Ux), with r;
determined by meromorphic dlfferentials, A the Abel map, U a suitable number,
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and the Riemann theta function:

1
9(2) := Z exp (2mth + ztm> ,

meZI

with normalized period matrix [27i1, ()] associated to the hyperelliptic curve of
genus g branched at eg, ..., ez4,00. More general curves provide algebro-geometric
solutions to the KP hierarchy,

2

0
u(t) = _28_t% log ¥ ;tiUi + Uy | + const,

where U; € CY9 are suitable vectors and the constant depends on the curve.
Equivalently, the KdV hierarchy is obtained as the zero-curvature condition

O, U — 0y Viy1 + U, Vp41] =0, where U = {—z _1_(11(1:,2) é}
and V41 is a suitable matrix depending on z,t and polynomially on z. While this
is just the (d x d)-matrix version of a d-th order linear differential equation, it is a
powerful formalism when generalized (replacing z by a rational function changes the
spectral curve; imposing conditions on the entries of the matrix or, more daringly,
replacing differentiation by integration, a non-local operator, changes the equations)
which encodes all the equations treated in this book.

Arts and crafts. The book is deftly crafted, consisting of five main chapters, each
of which takes up in turn, and in parallel, one main class of integrable equations.
This is an excellent choice for at least two reasons, theoretical and pedagogical.
Theoretically, the geometric picture progresses from the earliest example (KdV),
whose spectral curves are hyperelliptic with a branchpoint at infinity (the point
with local parameter z=1, 22 in the spectrum), to the curves of sine-Gordon and
modified KdV, then the more general hierarchy called AKNS from the initials of the
devisers (M.J. Ablowitz, D.J. Kaup, A.C. Newell and H. Segur), where infinity need
not be ramified, on to the massive Thirring model (the flows on the Jacobian have
directions differing in nature from the previous in that the hyperelliptic conjugation
does not act on their ensemble), and the most recently studied Camassa-Holm
equation, the one which is to date the more geometrically mysterious, admitting
solutions (“peakons”) with non-meromorphic behavior. The spectral curve is still
hyperelliptic, solutions are expressed by the theta function; but in deriving the
Dubrovin equations, the authors note that the divisor map does not linearize the
hierarchy; the non-linear behavior is interpreted in terms of a constraint, and this
in turn is interpreted as non-linear motion on the generalized Jacobian.

The parallel treatment makes for some repetition, but one that is pedagogically
efficient: the cases are different enough that the thorough development of the for-
mulas and the techniques will result in sound training. This thoroughness is part
of the reason why the authors do not provide exercises (as well as the fact that
non-trivial exercises in the theory would amount to research projects).

In ten appendices, the authors cover economically the foundations of what areas
are needed to fully use the techniques, e.g., Riemann surfaces and theta functions,
Lagrange Interpolation, Herglotz and Weyl-Titchmarsh functions of spectral theory.
This provides a complete, self-contained, user-friendly resource.
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The least pleasant obligation of a reviewer is to ask what is missing from the
book. The authors volunteer a list in the Introduction (and the overview given
above perhaps provides a hint or two). In addition, there isn’t information on ‘future
directions’ (e.g., Frobenius manifolds and isomonodromy in Hurwitz spaces, where
the tau function appears again, conformal blocks, string theory, Gromov-Witten
invariants); there is no mention of alternative models (e.g., dispersionless hierar-
chies, Whitham equations, non-canonical normal form and perturbation of finite
and continuous Hamiltonian systems, calculus of variations on infinite-dimensional
manifolds) or striking applications to classical and contemporary differential geom-
etry (e.g., differential invariants, harmonic maps, minimal surfaces, the Willmore
conjecture), but if I were to name just one aspect of these equations that is left out
of the book, I would say it is the Hamiltonian (symplectic, or Poisson if you prefer,
with attendant buzzwords R matrices and quantum groups) structure. It is present
in a very significant way in all of the formulas in this book, but the authors chose
not to analyze the dependence of the solutions on the moduli of the spectral curve.
To me, that dependence provides the second reason for the pervasiveness of alge-
braic geometry in physics: the abelian sum takes place on one integral manifold,
then the heat connection allows you to walk through the phase space and completes
the dual nature of the theta function, linking it with modular forms. Foundations
on that aspect (written by some of its originators) can be found in [DKN] and [ET],
different from each other in their viewpoints on symmetries: constraint equations
in the former, reduction of invariants in the latter.

While these ‘omissions’ are deliberate, the book more than compensates by fill-
ing significant gaps, mainly in the ‘coda’ (the “Notes” sections) that accompanies
each chapter, including most of the appendices. The “Notes” provide a comprehen-
sive history of the equations, including the nineteenth century; alternative spectral
formulas (e.g. scalar operator to matrix); real-valuedness; periodicity constraints;
topological properties; and more.

A combination of hard analysis and a lucid geometric justification of the mystery
of integrability in the algebro-geometric case, including classical intuitions (for one
example, the Darboux-Béacklund transformation of the KdV potential,

u(z,t) = —2p(x — ct) — —2p(x —ct —e)
is nothing but conjugation by (0 — %) in the ring P, 1 the Baker function at the

point P = (p(e), 5¢'(e)) of the spectrum), providing unity to the 800+ bibliogra-
phy, makes this book a very valuable resource.
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