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The mathematical theory of quantum mechanics traces its roots to the semi-
nal work of John von Neumann in 1929, The Mathematical Theory of Quantum
Mechanics [18]. At that time, theoretical physicists had developed two competing
computational formalisms for describing the behavior of atoms and molecules: one
was the matrix mechanics of W. Heisenberg [12], and the other was the partial
differential equation approach of E. Schrödinger [22]. von Neumann formulated the
theory in terms of linear operators on Hilbert space, then a recent invention, and
showed that the two approaches are simply equivalent representations. He proved
that all infinite-dimensional, separable, complex Hilbert spaces are isometrically
isomorphic, a fact anticipated by Schrödinger in [22]. This, and related results
in [18], provided the mathematical foundations for quantum mechanics and some
key results in the new field of functional analysis. Eventually, the linear differen-
tial operator approach to quantum mechanics became widely accepted. Partially
because of this, the spectral theory of linear operators developed in parallel with
the mathematical theory of quantum mechanics during the middle of the twentieth
century. Research in quantum mechanics also stimulated work in related fields of
mathematics, especially group representation theory. The role of symmetries and
group representations in quantum mechanics was clarified with the publication of
treatises such as The Theory of Groups and Quantum Mechanics by Hermann Weyl
[29].

The next major impetus to the development of mathematical quantum mechanics
came with an improved understanding of dynamics. Stone [28] and Kato [16] rec-
ognized the importance of the self-adjointness of Schrödinger operators in proving
the existence of a unitary time evolution, an essential component of quantum me-
chanics, and much effort was directed towards proving the self-adjointness of various
Schrödinger operators. Finally, scattering theory, a technique for understanding the
relationship between the continuous spectra of two self-adjoint operators, based on
collision processes between quantum particles, was widely developed in the 1950’s,
1960’s, and 1970’s. The latter part of the twentieth century saw major progress in
understanding complex N -body quantum systems, the stability of matter, quantum
resonances, the semiclassical approximation, and models of disordered media.

The basic partial differential equation of nonrelativistic quantum mechanics is
the Schrödinger equation. The state of a quantum mechanical system is repre-
sented by a function ψ(x, t), with the interpretation that |ψ(x, t)|2 is a probability
density on R

d at each time t. Thus, the function must be square integrable and∫
Rd |ψ(x, t)|2 dx = 1 for each time. This means that the description of the system

should take place on the Hilbert space L2(Rd), where the dimension d depends
on the spatial dimension and on the number of particles in the system (neglecting
spin). Furthermore, the square-integrability condition means that the probability
is preserved under the time evolution of an initial state. The Schrödinger equation
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is the equation for that time evolution having the form

(1) i
∂ψ

∂t
= Hψ,

with the initial condition ψ(x, t = 0) = ψ0(x) ∈ L2(Rd). The formal solution to the
first-order equation in time (1) is

(2) ψ(x, t) = U(t)ψ0(x) = e−itHψ0(x).

In order to make sense of this equation on the Hilbert space L2(Rd), it is necessary
and sufficient that the generator H of the time evolution U(t) be a self-adjoint
operator. In this case, the evolution operator U(t) is a strongly continuous, one-
parameter unitary group.

The specific quantum system is modeled by the choice of the Schrödinger op-
erator. The Schrödinger operator, or Hamiltonian, HV , is an unbounded linear
transformation on the Hilbert space L2(Rd) of the form

(3) HV = H0 + V,

where H0 is called the unperturbed operator, describing a simple system, and the
real-valued function V (x), acting as a multiplication operator, is called the po-
tential. The potential V represents the interaction among the particles and the
interaction of the particles with their environment. Typically, the unperturbed op-
erator H0 is taken to be the Laplacian on R

d and is given in Cartesian coordinates
by H0 = −∆ = −

∑d
j=1 ∂2/∂x2

j . This choice of H0 describes the kinetic energy of
free quantum particles, such as noninteracting electrons. One of the achievements
of nonrelativistic quantum mechanics is the description of the simplest atom, the
hydrogen atom. In the approximation that the proton is infinitely more massive
than the electron, the operator HV has the form

(4) HV = −∆ − 1/‖x‖, on L2(R3),

where V (x) = −1/‖x‖ is the Coulomb potential. We have set Planck’s constant
h = 2π, the electric charge e = 1, and the mass m = 1/2. The corresponding
Schrödinger equation is completely solvable. The prediction of the energy levels of
hydrogen, easily observed in the laboratory, is one of the remarkable successes of
the theory.

More complicated atoms and molecules are described by more complicated self-
adjoint operators HV and these are no longer exactly solvable. An essential tool
for understanding these more complicated Schrödinger operators is the spectrum
of the operator. The spectrum of a self-adjoint operator A on a Hilbert space H is
the closed, nonempty subset of real numbers λ ∈ R for which the operator (A−λI)
does not have a bounded inverse. The spectrum divides naturally into two disjoint
subsets of the real numbers: the discrete values E, called eigenvalues, for which
there is a function ψE ∈ H satisfying AψE = EψE , and the rest. The fact that the
complement in the spectrum of A of the set of eigenvalues of A may be nonempty
is a consequence of the infinite dimensionality of the Hilbert space.

The eigenvalues of a Schrödinger operator HV lie on the negative real axis. They
describe the stationary or bound states of the system. It follows from (1) that the
time evolution of such a state is trivial: U(t)ψE = e−itEψE . Many approximation
techniques have been developed for computing eigenvalues. One of the most use-
ful tools is perturbation theory in which eigenvalues of a complicated system are
approximated by those of simpler systems. Typically, one considers a Hamiltonian
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Hλ = H0 + λV and assumes that the eigenvalues Ej(λ) have an expansion in λ
about λ = 0. Perturbation theory provides formulas for the coefficients in the ex-
pansion Ej(λ) = e0 + λe1 + · · · , where e0 is the corresponding eigenvalue of H0.
Perturbation theory was raised to an art form by K. Friedrichs [10], F. Rellich [21],
and T. Kato [16], among others. T. Kato’s book Perturbation Theory for Linear
Operators [16] is a classic in the field.

The nature of the rest of the spectrum, which is called the essential spectrum
(more precisely, the complement of the set of isolated eigenvalues of finite multiplic-
ity), is more complicated. However, it is also robust. The essential spectrum is the
component of the spectrum that is stable under relatively compact perturbations.
To describe it further, we note that in its simplest form, the Spectral Theorem
for a self-adjoint operator A states that A determines a measure µA on the real
line. This measure has a Lebesgue decomposition into a point measure µA

p and a
continuous measure µA

c . The continuous measure, in turn, can be decomposed as
µA

c = µA
ac + µA

sc, where the measure µA
ac, respectively µA

sc, is absolutely continu-
ous, respectively singular continuous, with respect to Lebesgue measure. Roughly
speaking, the supports of these measures correspond to the another decomposition
of the spectrum of A into pure point, absolutely continuous, and singular contin-
uous parts. The essential spectrum of A contains the absolutely continuous and
singular continuous components of the spectrum, along with any limit points of
eigenvalues and eigenvalues of infinite multiplicity.

The absolutely continuous component of the spectrum is described by scattering
theory. Extensive treatments of scattering theory can be found in M. Reed and
B. Simon’s volume 3 of the Methods of Modern Mathematical Physics [20], and
in D. Yafaev’s text Mathematical Scattering Theory [30]. Classical and quantum
scattering theory for N -body systems is the main topic of the text Scattering Theory
of Classical and Quantum N-Particle Systems by J. Dereziński and Ch. Gérard
[8]. The basic idea of scattering theory is that the description of the long-time
asymptotics of a quantum system with Hamiltonian HV , given by ψ(x, t) in (2),
can be described by the asymptotics of a simpler system with Hamiltonian H0,
provided the perturbation V ≡ H−H0 is sufficiently weak. Rather than comparing
the operators directly, as in usual eigenvalue perturbation theory, one studies the
unitary evolution groups, defined in (2), associated with the Hamiltonians H0 and
HV . Let us assume that H0 and HV have no singular continuous spectra. The
central objects in the study of the time evolution are the wave operators defined,
in the simplest case, by the following limits in the strong operator topology

(5) Ω±(HV , H0) ≡ s − lim
t→±∞

eitHV e−itH0Pac(H0),

when they exist. Here, Pac(A) is the orthogonal projection onto the absolutely
continuous subspace of A which is the subspace of the Hilbert space orthogonal to
the span of all of the eigenfunctions of A. One basic result is that the existence of
both of the wave operators Ω+(H, H0) and Ω+(H0, H) implies that the absolutely
continuous components of H0 and HV , defined as the restriction of each operator
to its absolutely continuous subspace, are unitarily equivalent.

As the above discussion illustrates, the spectral analysis of self-adjoint operators
is one of the prime tasks of mathematical quantum mechanics. The book by Demuth
and Krishna is a very nice account of some recent developments. The authors
concentrate on the spectral problem for mainly self-adjoint linear operators on
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Hilbert spaces. They describe some recently developed tools that help with the
understanding of the spectral properties of these operators. The foundations are
presented in Chapter 1, Measures and Transforms. This chapter describes the basic
relations between linear operators, measures, and transforms. As a first example,
let us consider the Borel-Stieltjes transform. If H is a possibly unbounded linear
operator on a separable Hilbert space H with a cyclic vector φ ∈ H, there is a
naturally associated measure µH

φ defined by using the resolvent RH(z) = (H−z)−1,
which exists for �z �= 0, by

(6) FH(z) ≡ 〈φ, RH(z)φ〉 =
∫

R

dµH
φ (λ)

λ − z
.

In other words, the matrix element of the resolvent is the Borel-Stieltjes transform
of the measure µH

φ . The spectral properties of H are encoded in the behavior of
the boundary values of the function FH(E + iε), as ε → 0. When H does not have
a cyclic vector such measures still exist, but one has to consider a family of such
measures for sufficiently many vectors. The authors present two other transforms
on measures that play an important role in spectral analysis of linear operators:
the Fourier transform and the Wavelet transform. These will be described in more
detail below.

Chapter 2, Selfadjointness and Spectrum, contains traditional material on self-
adjointness and the spectra of linear operators. This is a well-written and concise
chapter. The chapter contains a clear presentation of the Spectral Theorem for self-
adjoint operators (although the authors assume the existence of a spectral family).
A more expanded version of this material can be found in the treatise of Reed
and Simon [20]; specifically, general spectral theory is described in volume 1, self-
adjointness in volume 2, and applications to Schrödinger operators, in volume 4.

In Chapter 3, Criteria for Identifying the Spectrum, the authors begin an ap-
proach that brings together many techniques that have been very helpful in spec-
tral analysis. They concentrate their study of self-adjoint operators on the Borel,
Fourier, and Wavelet transforms of the measures associated with a self-adjoint oper-
ator and vectors in the Hilbert space (see (6) and (11)). The Borel transform of the
measure µA

φ associated with a self-adjoint operator A and the state φ was defined
in (6). The Borel transform plays a key role in the Aronszajn-Donoghue theory
[2, 9] of rank one perturbations. Let K = Pψ be a rank one self-adjoint operator
whose range is the one-dimensional subspace spanned by ψ. Let us assume that ψ
is cyclic for A. We consider the perturbation A(λ) = A+λK. If Fλ(z) is the Borel
transform of the spectral measure of A(λ) and the state ψ, one easily derives the
rather amazing formula

(7) Fλ(z)(1 + λF0(z)) = F0(z), �z > 0.

This equation allows us to study the boundary values of the Herglotz function
Fλ(z), and hence the spectral properties of A(λ), in terms of those of the Her-
glotz function F0(z) for the unperturbed operator. For example, one can easily
identify the supports of the various components of the Lebesgue decomposition
of the spectral measure by applying classical theorems, like Fatou’s Theorem and
the de la Vallée Poussin Theorem (see section I.3 of [4]). Among mathematical
physicists working on localization, the use of the Borel transform had a renais-
sance in the 1980’s with the work of Kotani (see, for example, [17]) and with the
Simon-Wolff proof of localization for the Anderson model [26]. With the aid of
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the Aronszajn-Donoghue theory, these authors proved the absence of singular con-
tinuous spectrum with probability one for various families of random Schrödinger
operators. The book by Demuth and Krishna presents the classical Aronszajn-
Donoghue theory for rank one perturbations. They then present the applications
to random Schrödinger operators due to Simon-Wolff [26], on the almost sure ab-
sence of singular continuous spectrum, and due to Jaksić-Last [14], on the almost
sure purity of the absolutely continuous spectrum. Another presentation of this
material can be found in the new edition of Barry Simon’s book on trace ideals
[24], in which his 1993 Vancouver lectures are reprinted.

The use of the Fourier transform to study self-adjoint operators is somewhat
more classical. The Fourier transform of a measure µ is formally defined by

(8) µ̂(k) =
1√
2π

∫ ∞

−∞
e−ikt dµ(t).

Wiener (cf. [5]) proved a beautiful result on the Fourier transform µ̂ of a finite
measure µ. If A(µ) is the set of atoms of µ, then

(9) lim
T→∞

1
2T

∫ T

−T

|µ̂(t)|2 dt =
1
2π

∑
x∈A(µ)

|µ({x})|2.

It follows immediately that if the limit on the left in (9) is zero, then the measure
µ is purely continuous.

This result has applications to quantum mechanical scattering theory. Stone’s
representation of a one-parameter, strongly continuous unitary group U(t) as the
exponential of a unique self-adjoint operator U(t) = e−itA allows us to construct a
functional calculus based on the Fourier transform. For a Schwartz class function
f and a Hilbert space vector φ, one can define an operator f(A) by

(10) 〈φ, f(A)φ〉 =
1
2π

∫ ∞

−∞
f̂(t) 〈φ, U(−t)φ〉 dt.

This is a bounded linear functional and the Riesz-Markov Theorem (cf. [20]) implies
that there exists a measure µA

φ on the real line so that

(11) 〈φ, f(A)φ〉 =
∫ ∞

−∞
f(t) dµA

φ (t).

This is the same measure occurring in (6) where f(x) = (x − z)−1. We will refer
to these measures as spectral measures for A.

Returning to scattering theory, the matrix element of the unitary time-evolution
group U(t) in (2) is the Fourier transform of this measure µH

φ for the generator H:

(12) 〈φ, U(t)φ〉 =
∫ ∞

−∞
e−itλ dµH

φ (λ) = µ̂H
φ (t).

Hence, the large time asymptotic behavior of the time-averaged absolute square
of the matrix element evolution group U(t) is related to the Fourier transform of
the spectral measure and, by Wiener’s Theorem, to the presence or not of point
spectrum for the generator H.

The third transform discussed by the authors is the Wavelet transform, a new
tool in the spectral analysis of self-adjoint operators. Let ψ ∈ L1(R) be a mother
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wavelet. The continuous wavelet transform of a function g ∈ Lp(R), for 1 ≤ p ≤ ∞,
with respect to ψ, is a function of (x1, x2) ∈ R

+ × R representing dilations and
translations. It is given by

(13) (Tψg)(x1, x2) =
∫

R

ψ(x−1
1 (y − x2))g(y) dy.

The fundamental paper of Jensen and Krishna [15] describes how the measure and
its components can be obtained from its wavelet transform. Applied to a self-adjoint
operator A, the authors show how to recover spectral properties of A from matrix
elements of its wavelet transform, defined as

(14) 〈φ, ψ(a−1(A − λ))φ〉,
and various averages of this function over λ, as a → 0+. For example, if for all
λ ∈ (a, b), one has

(15) sup
a>0

a−1〈φ, ψ(a−1(A − λ))φ〉 < ∞,

for some φ, then A has no singular spectrum in the interval (a, b).
Chapter 4, Operators of Interest, is devoted to a careful treatment of Schrödinger

operators of the type (3). The techniques introduced in the previous chapters are
used to study first the unperturbed operators and then various perturbations. The
issues here are twofold: determine classes of potentials for which the perturbed oper-
ator (3) is self-adjoint, given a self-adjoint, unperturbed operator H0; and, second,
determine the spectral properties of the perturbed operator HV , assuming some
knowledge of the spectrum of H0. As examples of H0, the authors treat fractional
powers of the Laplacian on L2(Rd) via the Fourier transform. They also discuss
the discrete finite-difference Laplacian on �2(Zd) and give several properties of the
Green’s function. Using methods of stochastic analysis, they study the semigroups
generated by these unperturbed operators and the corresponding kernels. There is
a nice section on Dirichlet forms and their relation to Hunt processes, but without
proofs. A much more complete version of this material can be found, for example, in
the book of Demuth and van Casteren [7]. Next, the authors discuss perturbations
by real-valued potentials and distinguish permissible sets of deterministic potentials
and of random potential. The outlook is dominated by the relationship between the
semigroups associated to HV and various stochastic processes. The discussion of
perturbations by random potentials is standard, emphasizing the families of ergodic
random potentials and the corresponding deterministic spectrum of the family of
randomly perturbed operators. Stochastic analysis takes the foreground again in
the discussion of singular perturbations. The authors consider singular perturba-
tions that are perturbations by boundary conditions, or, equivalently, perturbations
by potentials that take the value plus infinity on some closed subset of R

d.
The last chapter, Applications, has two main components. In the first, the

authors discuss the spectral theory of random Schrödinger operators on the lattice.
The basic Anderson model is the family of Schrödinger operators having the form

(16) Hω = ∆ + Vω, on �2(Zd),

where ∆ is the discrete, finite-difference Laplacian, and Vω is the multiplication op-
erator (Vωf)(n) = ωnf(n), for n ∈ Z

d. The family {ωn} is a family of independent,
identically distributed random variables. These operators are fascinating from the
spectral theory point of view as they exhibit unexpected spectral properties. Chief
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among these unusual properties is Anderson localization. This property means the
existence of an interval of dense, pure point spectrum with exponentially decaying
eigenfunctions, almost surely. The authors present the method of Aizenman and
Molchanov [1] that is used to obtain estimates on the expectation of fractional pow-
ers of the Green’s function. Another interesting model described in detail in the
present book is the Anderson model on the Bethe lattice, a rooted tree with con-
stant branching number greater than or equal to two. For this model, it is known
that there is both absolutely continuous spectrum and dense pure point spectrum
with probability one in disjoint intervals. This section provides a nice introduction
to random operators, and the interested reader can find much more information in
the specialized books by Carmona and Lacroix [4], Pastur and Figotin [19], and
Stollmann [27].

The second main application in Chapter 5 focuses on the use of scattering the-
ory to describe the continuous spectrum of various families of Schrödinger operators
and operators that arise in the scattering of waves by obstacles. In the first part,
the authors discuss the problem of determining the continuous spectrum for ran-
dom operators with decaying randomness using wave operators. In the second part,
the methods of stochastic analysis, presented in Chapter 4, play a role. Stochastic
methods are well suited to analysis involving semigroups and, via the Laplace trans-
form, resolvents. Scattering problems with boundary conditions on the boundary
of obstacles fit nicely into the theory of singular perturbations presented in Chapter
4. The semigroup is naturally expressed as an expectation with respect to various
stochastic processes. For example, for closed regions Γ ∈ R

d with finite capacity,
the authors prove that the absolutely continuous spectrum of the Laplacian on
R

d\Γ, with Dirichlet boundary conditions, is the positive half-line.
There are now several books on various aspects of functional analysis and proba-

bility theory, spectral and scattering theory, and mathematical quantum mechanics.
In addition to the four volume work of Reed and Simon [20], the interested reader
may also consult books such as Blank, Exner, and Havĺıček [3], Cycon, Froese,
Kirsch, and Simon [5], E. B. Davies [6], Dereziński and Gérard [8], Gustafson and
Sigal [11], Hislop and Sigal [13], Simon [25], and Yafaev [30]. Although there are
overlaps in these texts, each has a different perspective and focuses on a different
aspect of the field. The text of Demuth and Krishna complements these texts in
focusing on what spectral information can be obtained from various transforms
of spectral measures. I found the book very enjoyable to read. It is a clearly
written and accessible reference for many techniques of spectral analysis that are
commonly used in contemporary research in Schrödinger operators. Anyone with
a background in basic real analysis, including the fundamentals of measure theory,
and basic functional analysis, including Banach and Hilbert space theory, should
be able to read and profit from the book.
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