Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 3077140
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: T. Y. Lam
Title: Introduction to quadratic forms over fields
Additional book information: Graduate Studies in Mathematics, vol. 67, American Mathematical Society, Providence, RI, 2005, xxi+550 pp., ISBN 978-0-8218-1095-8

References [Enhancements On Off] (What's this?)

  • E. Bayer-Fluckiger and H. W. Lenstra Jr., Forms in odd degree extensions and self-dual normal bases, Amer. J. Math. 112 (1990), no. 3, 359–373. MR 1055648, DOI 10.2307/2374746
  • E. Bayer-Fluckiger and R. Parimala, Galois cohomology of the classical groups over fields of cohomological dimension $\leq 2$, Invent. Math. 122 (1995), no. 2, 195–229. MR 1358975, DOI 10.1007/BF01231443
  • J.-L. Colliot-Thélène, P. Gille, and R. Parimala, Arithmetic of linear algebraic groups over 2-dimensional geometric fields, Duke Math. J. 121 (2004), no. 2, 285–341. MR 2034644, DOI 10.1215/S0012-7094-04-12124-4
  • Philippe Gille, Cohomologie galoisienne des groupes quasi-déployés sur des corps de dimension cohomologique $\leq 2$, Compositio Math. 125 (2001), no. 3, 283–325 (French, with English summary). MR 1818983, DOI 10.1023/A:1002473132282
  • Oleg T. Izhboldin, Fields of $u$-invariant $9$, Ann. of Math. (2) 154 (2001), no. 3, 529–587. MR 1884616, DOI 10.2307/3062141
  • Bruno Kahn, La conjecture de Milnor (d’après V. Voevodsky), Astérisque 245 (1997), Exp. No. 834, 5, 379–418 (French, with French summary). Séminaire Bourbaki, Vol. 1996/97. MR 1627119
  • Bruno Kahn, Formes quadratiques et cycles algébriques (d’après Rost, Voevodsky, Vishik, Karpenko et al.), Astérisque 307 (2006), Exp. No. 941, vii, 113–163 (French, with French summary). Séminaire Bourbaki. Vol. 2004/2005. MR 2296417
  • Max-Albert Knus, Quadratic and Hermitian forms over rings, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 294, Springer-Verlag, Berlin, 1991. With a foreword by I. Bertuccioni. MR 1096299, DOI 10.1007/978-3-642-75401-2
  • 9.
    M. Knus, A. Merkurjev, M. Rost, J-P. Tignol, The Book of Involutions, AMS Colloquium Publications, Vol 44 (1998).
  • T. Y. Lam, The algebraic theory of quadratic forms, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass., 1973. MR 0396410
  • A. S. Merkur′ev, Kaplansky’s conjecture in the theory of quadratic forms, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 175 (1989), no. Kol′tsa i Moduli. 3, 75–89, 163–164 (Russian); English transl., J. Soviet Math. 57 (1991), no. 6, 3489–3497. MR 1047239, DOI 10.1007/BF01100118
  • John Milnor, Algebraic $K$-theory and quadratic forms, Invent. Math. 9 (1969/70), 318–344. MR 260844, DOI 10.1007/BF01425486
  • Fabien Morel, Milnor’s conjecture on quadratic forms and mod 2 motivic complexes, Rend. Sem. Mat. Univ. Padova 114 (2005), 63–101 (2006). MR 2207862
  • 14.
    D. Orlov, A. Vishik, V. Voedovsky, An exact sequence for Milnor's $ K$-theory with applications to quadratic forms, preprint (2001), arxiv.org/abs/math/0101023
  • Albrecht Pfister, Quadratic forms with applications to algebraic geometry and topology, London Mathematical Society Lecture Note Series, vol. 217, Cambridge University Press, Cambridge, 1995. MR 1366652, DOI 10.1017/CBO9780511526077
  • A. Pfister, On the Milnor conjectures: history, influence, applications, Jahresber. Deutsch. Math.-Verein. 102 (2000), no. 1, 15–41. MR 1769021
  • Winfried Scharlau, Quadratic and Hermitian forms, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 270, Springer-Verlag, Berlin, 1985. MR 770063, DOI 10.1007/978-3-642-69971-9
  • Jean-Pierre Serre, Cohomologie galoisienne des groupes algébriques linéaires, Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962) Librairie Universitaire, Louvain; Gauthier-Villars, Paris, 1962, pp. 53–68 (French). MR 0186719
  • Jean-Pierre Serre, Cohomologie galoisienne, 5th ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994 (French). MR 1324577, DOI 10.1007/BFb0108758
  • Jean-Pierre Serre, Cohomologie galoisienne, 5th ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994 (French). MR 1324577, DOI 10.1007/BFb0108758
  • Robert Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49–80. MR 180554
  • 22.
    A. Vishik, Fields of u-invariant $ 2^r+1$, preprint (2006).
  • Vladimir Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 1–57. MR 2031198, DOI 10.1007/s10240-003-0009-z
  • Vladimir Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 1–57. MR 2031198, DOI 10.1007/s10240-003-0009-z
  • André Weil, Algebras with involutions and the classical groups, J. Indian Math. Soc. (N.S.) 24 (1960), 589–623 (1961). MR 136682
  • 26.
    E. Witt, Theorie der quadratischen Formen in beliebigen Körpern, J. Reine Angew. Math. 176 (1937), 31-44 (= Collected Papers, 1).

    Review Information:

    Reviewer: Eva Bayer-Fluckiger
    Affiliation: Ecole Polytechnique Fédérale, Lausanne
    Email: eva.baver@epfl.ch
    Journal: Bull. Amer. Math. Soc. 45 (2008), 479-484
    DOI: https://doi.org/10.1090/S0273-0979-08-01200-7
    Published electronically: April 21, 2008
    Review copyright: © Copyright 2008 American Mathematical Society