Book Review
The AMS does not provide abstracts of book reviews.
You may download the entire review from the links below.
MathSciNet review:
2798319
Full text of review:
PDF
This review is available free of charge.
Book Information:
Author:
Ivan Cherednik
Title:
Double affine Hecke algebras
Additional book information:
London Mathematical Society,
Lecture Note Series, 319, xii+434 pp.,
ISBN 978-0-521-609180,
US$79.00$
Ivan Cherednik, A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras, Invent. Math. 106 (1991), no. 2, 411–431. MR 1128220, DOI 10.1007/BF01243918
Ivan Cherednik, Double affine Hecke algebras, Knizhnik-Zamolodchikov equations, and Macdonald’s operators, Internat. Math. Res. Notices 9 (1992), 171–180. MR 1185831, DOI 10.1155/S1073792892000199
Ivan Cherednik, Induced representations of double affine Hecke algebras and applications, Math. Res. Lett. 1 (1994), no. 3, 319–337. MR 1302647, DOI 10.4310/MRL.1994.v1.n3.a4
Ivan Cherednik, Double affine Hecke algebras and Macdonald’s conjectures, Ann. of Math. (2) 141 (1995), no. 1, 191–216. MR 1314036, DOI 10.2307/2118632
Ivan Cherednik, Macdonald’s evaluation conjectures and difference Fourier transform, Invent. Math. 122 (1995), no. 1, 119–145. MR 1354956, DOI 10.1007/BF01231441
Ivan Cherednik, Nonsymmetric Macdonald polynomials, Internat. Math. Res. Notices 10 (1995), 483–515. MR 1358032, DOI 10.1155/S1073792895000341
Ivan Cherednik, Lectures on Knizhnik-Zamolodchikov equations and Hecke algebras, Quantum many-body problems and representation theory, MSJ Mem., vol. 1, Math. Soc. Japan, Tokyo, 1998, pp. 1–96. MR 1724948
Ivan Cherednik and Viktor Ostrik, From double Hecke algebra to Fourier transform, Selecta Math. (N.S.) 9 (2003), no. 2, 161–249. MR 1993484, DOI 10.1007/s00029-003-0329-3
V. G. Drinfel′d, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798–820. MR 934283
Pavel I. Etingof, Igor B. Frenkel, and Alexander A. Kirillov Jr., Lectures on representation theory and Knizhnik-Zamolodchikov equations, Mathematical Surveys and Monographs, vol. 58, American Mathematical Society, Providence, RI, 1998. MR 1629472, DOI 10.1090/surv/058
I. B. Frenkel and N. Yu. Reshetikhin, Quantum affine algebras and holonomic difference equations, Comm. Math. Phys. 146 (1992), no. 1, 1–60. MR 1163666
G. J. Heckman, An elementary approach to the hypergeometric shift operators of Opdam, Invent. Math. 103 (1991), no. 2, 341–350. MR 1085111, DOI 10.1007/BF01239517
N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of ${\mathfrak {p}}$-adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 5–48. MR 185016
Michio Jimbo and Tetsuji Miwa, Algebraic analysis of solvable lattice models, CBMS Regional Conference Series in Mathematics, vol. 85, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1995. MR 1308712
V. G. Knizhnik and A. B. Zamolodchikov, Current algebra and Wess-Zumino model in two dimensions, Nuclear Phys. B 247 (1984), no. 1, 83–103. MR 853258, DOI 10.1016/0550-3213(84)90374-2
V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1993. MR 1245942, DOI 10.1017/CBO9780511628832
Gail Letzter, Quantum zonal spherical functions and Macdonald polynomials, Adv. Math. 189 (2004), no. 1, 88–147. MR 2093481, DOI 10.1016/j.aim.2003.11.007
George Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), no. 3, 599–635. MR 991016, DOI 10.1090/S0894-0347-1989-0991016-9
I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Astérisque 237 (1996), Exp. No. 797, 4, 189–207. Séminaire Bourbaki, Vol. 1994/95. MR 1423624
I. G. Macdonald, Orthogonal polynomials associated with root systems, Sém. Lothar. Combin. 45 (2000/01), Art. B45a, 40. MR 1817334
I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, vol. 157, Cambridge University Press, Cambridge, 2003. MR 1976581, DOI 10.1017/CBO9780511542824
Masatoshi Noumi, Macdonald’s symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces, Adv. Math. 123 (1996), no. 1, 16–77. MR 1413836, DOI 10.1006/aima.1996.0066
S. N. M. Ruijsenaars, Complete integrability of relativistic Calogero-Moser systems and elliptic function identities, Comm. Math. Phys. 110 (1987), no. 2, 191–213. MR 887995
F. A. Smirnov, Form factors in completely integrable models of quantum field theory, Advanced Series in Mathematical Physics, vol. 14, World Scientific Publishing Co., Inc., River Edge, NJ, 1992. MR 1253319, DOI 10.1142/1115
- [1]
- I. Cherednik, A unification of Knizhnik-Zamolodchikov equations and Dunkl operators via affine Hecke algebras, Invent. Math. 106 (1991), 411-432. MR 1128220
- [2]
- I. Cherednik, Double affine Hecke algebras, Knizhnik-Zamolodchikov equations, and Macdonald's operators, Internat. Math. Res. Notices 1992, no. 9, 171-180. MR 1185831
- [3]
- I. Cherednik, Induced representations of double affine Hecke algebras and applications, Math. Res. Lett. 1 (1994), 319-337. MR 1302647
- [4]
- I. Cherednik, Double affine Hecke algebras and Macdonald's conjectures, Ann. of Math. (2) 141 (1995), no. 1, 191-216. MR 1314036
- [5]
- I. Cherednik, Macdonald's evaluation conjectures and difference Fourier transform, Invent. Math. 122 (1995), no. 1, 119-145. MR 1354956
- [6]
- I. Cherednik, Nonsymmetric Macdonald polynomials, Internat. Math. Res. Notices 1995, no. 10, 483-515. MR 1358032
- [7]
- I. Cherednik, Lectures on Knizhnik-Zamolodchikov equations and Hecke algebras. In: Quantum many-body problems and representation theory, 1-96, MSJ Mem., 1, Math. Soc. Japan, Tokyo, 1998. MR 1724948
- [8]
- I. Cherednik, V. Ostrik, From double affine Hecke algebra to Fourier transform, Selecta Math. (N.S.) 9 (2003), no. 2, 161-249. MR 1993484
- [9]
- V.G. Drinfel'd, Quantum Groups. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), 798-820, Amer. Math. Soc., Providence, RI, 1987. MR 0934283
- [10]
- P.I. Etingof, I.B. Frenkel, A.A. Kirillov Jr., Lectures on representation theory and Knizhnik-Zamolodchikov equations. Mathematical Surveys and Monographs, 58. Amer. Math. Soc., Providence, RI, 1998. MR 1629472
- [11]
- I.B. Frenkel, N. Yu. Reshetikhin, Quantum affine algebras and holonomic difference equations, Comm. Math. Phys. 146 (1992), no. 1, 1-60. MR 1163666
- [12]
- G.J. Heckman, An elementary approach to the hypergeometric shift operators of Opdam, Invent. Math. 103 (1991), 341-350. MR 1085111
- [13]
- N. Iwahori, H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of -adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 5-48. MR 0185016
- [14]
- M. Jimbo, T. Miwa, Algebraic analysis of solvable lattice models, CBMS Regional Conference Series in Mathematics, 85. Amer. Math. Soc., Providence, RI, 1995. MR 1308712
- [15]
- V.G. Knizhnik, A.B. Zamolodchikov, Current algebra and Wess-Zumino model in two dimensions, Nuclear Phys. B 247 (1984), 83-103. MR 0853258
- [16]
- V.E. Korepin, N.M. Bogoliubov, A.G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Monographs on Mathematical Physics, Cambridge University Press 1993. MR 1245942
- [17]
- G. Letzter, Quantum zonal spherical functions and Macdonald polynomials, Adv. Math. 189, no. 1 (2004), 88-147. MR 2093481
- [18]
- G. Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), no. 3, 599-635. MR 0991016
- [19]
- I.G. Macdonald, Symmetric functions and Hall polynomials, second edition. Oxford Math. Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1005. MR 1354144
- [20]
- I.G. Macdonald, Affine Hecke algebras and orthogonal polynomials. Séminaire Bourbaki, Vol. 1994/95. Astérisque No. 237 (1996), Exp. No. 797, 4, 189-207. MR 1423624
- [21]
- I.G. Macdonald, Orthogonal polynomials associated with root systems, Sém. Lothar. Combin. 45 (2000/01), Art. B45a, 40 pp. MR 1817334
- [22]
- I.G. Macdonald, Affine Hecke algebras and orthogonal polynomials. Cambridge Tracts in Mathematics, 157. Cambridge University Press, Cambridge, 2003. MR 1976581
- [23]
- M. Noumi, Macdonald's symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces, Adv. Math. 123, no. 1 (1996), 16-77. MR 1413836
- [24]
- S.N.M. Ruijsenaars, Complete integrability of relativistic Calogero-Moser systems and elliptic function identities, Comm. Math. Phys. 110 (1987), no. 2, 191-213. MR 0887995
- [25]
- F. Smirnov, Form factors in completely integrable models of Quantum Field Theory, World Scientific, Singapore, 1992. MR 1253319
Review Information:
Reviewer:
Eric M. Opdam
Affiliation:
KdV Institute for Mathematics, University of Amsterdam, The Netherlands
Email:
e.m.opdam@uva.nl
Reviewer:
Jasper V. Stokman
Affiliation:
KdV Institute for Mathematics, University of Amsterdam, The Netherlands
Email:
j.v.stokman@uva.nl
Journal:
Bull. Amer. Math. Soc.
46 (2009), 143-150
DOI:
https://doi.org/10.1090/S0273-0979-08-01208-1
Published electronically:
September 15, 2008
Additional Notes:
The work of J. V. Stokman was supported by a VIDI-grant of the Netherlands Organization for Scientific Research (NWO)
Review copyright:
© Copyright 2008
American Mathematical Society